

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

DESIGN AND IMPLEMENTATION OF A PROTOTYPE
ONTOLOGY AIDED KNOWLEDGE DISCOVERY

ASSISTANT (OAKDA) APPLICATION

by

Ann Y. Lee
Edward C. Powers

December 2006

 Thesis Advisor: Magdi Kamel
 Second Reader: Neil Rowe

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 2006

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE:
Design And Implementation of a Prototype Ontology Aided Knowledge Discovery
Assistant (OAKDA) Application

6. AUTHOR(S) Ann Y. Lee and Edward C. Powers

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

 The World Wide Web (WWW) has become a major source of easily accessible information for students, professionals,
researchers and the general public. However, the volume of information available through the Web is so overwhelming that it
is not unusual to get tens of thousands of "hits" when conducting a relatively simple search. Most existing search techniques
use brute force based on keyword matches to find related Web pages. While the enormous speed of search engines improves
the efficiency of such methods, effectiveness is not improved.

 The objective of this thesis is to construct and test an ontology-based application to help users identify the most pertinent
keywords for a search. By navigating ontologies that describe domains of interest, users are assisted in finding a relevant set of
key terms that will aid the search engines in narrowing, widening, or refocusing a Web search. Specifically, the thesis develops
an ontology-aided Web search assistant prototype to help users enhance the relevance and precision of the returned results
through the use of a context provided by ontologies associated with each search.

15. NUMBER OF
PAGES 205

14. SUBJECT TERMS OWL AIDED INTERNET SEARCH KNOWEDGE BASE DISCOVERY
DESCRIPTION LOGICS ONTOLOGY

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

DESIGN AND IMPLEMENTATION OF A PROTOTYPE ONTOLOGY AIDED
KNOWLEDGE DISCOVERY ASSISTANT (OAKDA) APPLICATION

Ann Y. Lee

Civilian, Department of Defense
B.S., University of California, Berkeley, 1998

Edward C. Powers

Civilian, Department of Defense
B.S., University of Maryland, 1989

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN INFORMATION TECHNOLOGY MANAGEMENT
and

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
December 2006

Authors: Ann Y. Lee

 Edward C. Powers

Approved by: Magdi Kamel

Thesis Advisor

 Neil Rowe

Second Reader

 Dan C. Boger
 Chairman, Department of Information Sciences

 Peter Denning
 Chairman, Department of Computer Sciences

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

 The World Wide Web (WWW) has become a major source of easily accessible

information for students, professionals, researchers and the general public. However, the

volume of information available through the Web is so overwhelming that it is not

unusual to get tens of thousands of "hits" when conducting a relatively simple search.

Most existing search techniques use brute force based on keyword matches to find related

Web pages. While the enormous speed of search engines improves the efficiency of such

methods, effectiveness is not improved.

The objective of this thesis is to construct and test an ontology-based application

to help users identify the most pertinent keywords for a search. By navigating ontologies

that describe domains of interest, users are assisted in finding a relevant set of key terms

that will aid the search engines in narrowing, widening, or refocusing a Web search.

Specifically, the thesis develops an ontology-aided Web search assistant prototype to help

users enhance the relevance and precision of the returned results through the use of a

context provided by ontologies associated with each search.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. BACKGROUND ..1
B. OBJECTIVES ..2
C. THE RESEARCH QUESTION...2
D. SCOPE, LIMITATIONS AND ASSUMPTIONS ...3
E. METHODOLOGY ..4
F. ORGANIZATION OF THE STUDY...5

II. RDF AND OWL ONTOLOGIES OVERVIEW ...7
A. INTRODUCTION..7
B. RDF PRIMER ..10

1. RDF Triple..10
2. RDF Schema...13
3. Classes ...13
4 Properties..14
5. Other RDF Vocabularies...15

C. WEB ONTOLOGY LANGUAGE (OWL): BUILDING AN
ONTOLOGY..17
1. Namespaces and Ontology Headers ...19
2. Basic Components of OWL...20
3. Defining OWL Classes...21

a. Disjoint Classes (disjointWith).......................................23
4. Individuals ..23
5. Properties..24

a. Defining Properties ...24
b. Properties and Datatypes ..26

6. Property Characteristics ...27
a. Transitive and Symmetric Properties27
b. Functional Property..28
c. InverseOf Property..29
d. Inverse Functional Property...30

7. Property Restrictions...31
a. someValuesFrom and allValuesFrom Restrictions...............31
b. Cardinality Restriction..33
c. owl:hasValue Restriction..34
d. Equivalent Classes and Properties ...34
e. Individual Equivalence Using owl:sameAs36
f. Individuals Differences Using owl:differentFrom &

owl:AllDifferent ..36
8. Complex Classes...38

a. Set Operators (intersectionOf, unionOf, complentOf)38
b. Enumerated Classes (oneOf) ..40

D. CONCLUSION ..41

 viii

III. ONTOLOGY DEVELOPMENT METHODOLOGY ...43
A. INTRODUCTION..43
B. THE PURPOSE OF BUILDING AN ONTOLOGY44
C. METHODOLOGIES FOR ONTOLOGY DEVELOPMENT48

1. Toronto Virtual Enterprise (TOVE)..48
2. METHONTOLOGY..49
3. KBSI IDEF5 ...50

D. THE STEPS TO DEVELOPING AN ONTOLOGY..................................51
1. Determine the Scope and Application of the Ontology53
2. List Relevant Concepts of the Domain...54
3. Create the Class Hierarchy ...55

a. Disjointed Classes ...58
4. Define the Properties ...59

a. Inverse Properties ...62
b. Transitive & Symmetric Properties ..63
c. Functional & Inverse Functional Properties65

5. Describe Classes Using Property Restrictions and Complex
Definitions...67
a. Universal and Existential Restrictions68
b. Open World vs. Closed World...70
c. Domain and Range ...74
d. Primitive and Defined Classes..76
e. Complex Classes: Proper use of Logical Operators

“AND” & “OR” ..79
6. Classify Ontology with a Reasoning Tool ..80
7. Create Individuals and Fill Property Values...................................83

E. OTHER CONSIDERATIONS FOR ONTOLOGY DEVELOPMENT ...84
F. CONCLUSION ..86

IV. ONTOLOGIES AS KNOWLEDGE BASES ..89
A. INTRODUCTION..89
B. MOTIVATION FOR USING ONTOLOGIES ...89
C. KNOWLEDGE DISCOVERY USING ONTOLOGIES............................92

1. The Wine Domain ..92
2. The Cartoon Domain ...99
3. The Geography Domain ..104

D. OTHER ONTOLOGY SEARCH APPLICATIONS................................108
E. CONCLUSION ..109

V. ARCHITECTURE OF ONTOLOGY AIDED KNOWLEDGE DISCOVERY
ASSISTANT (OAKDA) APPLICATION..111
A. INTRODUCTION..111
B. MULTI-TIER APPLICATION VS. SINGLE TIER

ARCHITECTURES...112
1. Presentation GUI Tier ...113
2. Presentation Logic Tier ...113
3. Business Logic Tier ..114

 ix

4. Data Access Tier...114
5. Data Tier:..114

C. OAKDA PROTOTYPE MULIT-TIER ARCHITECURE115
1. Presentation Tier..115
2. Presentation Logic Tier ...116

a. Presentation Logic: Web Tier...116
b. Presentation Logic: Proxy Tier ..117
c. Presentation Logic: Client Interface....................................119

3. Business Tier ..121
a. Racer Server ..122
b. Ontology Search matching algorithm124
c. Ontology Batch Loader...126

4. Data Access Tier...126
a. RICE JRacer API..126
b. JDBC ...126

5. Data Tier ...127
a. MySql Database...127
b. OWL-DL Ontology File ..129

6. OAKDA Client and Server Components.......................................129
D. OAKDA PROTOTYPE PROCESS FLOW ..130

1. Anatomy of an OAKDA Search..131
E. OAKDA PROTOTYPE EVENT SEQUENCE AND PROCESS

FLOW ...139
1. OAKDA UML Sequences..139

a. Home Page ..139
b. Ontology Search..140
c. Ontology Search Results Page..141
d. Ontology Exploration Applet GUI..144
e. Ontology Node Selection...145
f. Search Pre-Processing Page...146
g. Google Web Search Page..150

F. CONCLUSION ..151
1. Multi-Tier Architecture...151
2 Racer ...152
3. Visualization ...153

VI. OAKDA VS. GOOGLE COMPARATIVE PERFORMANCE STUDY............155
A. INTRODUCTION..155
B. EXPERIMENTAL DESIGN...155

1. Participants...155
2. Apparatus ...156
3. Data Collection Procedures...156

a. The “Answer Precision” Score...159
b. The “Context Precision” Score ..159

C. DATA ANALYSIS PROCEDURES ..160
1. t Tests for the “Participant Rating” ...161

 x

a. Statement of the Null and Research Hypothesis..................161
b. Set the Level of Significance or Type I Error Associated

with the Null Hypothesis...161
c. Select the Appropriate Test Statistic.....................................161
d. Compute the Obtained Value..161
e. Determine the Value Needed for the Rejection of the Null

Hypothesis ...161
f. Compare the Obtained Value to the Critical Value162
g. Decision Time..162

2. t Test for the “Answer Precision”...162
a. Statement of the Null and Research Hypothesis..................162
b. Set the Level of Significance or Type I Error Associated

with the Null Hypothesis...162
c. Select the Appropriate Test Statistic.....................................162
d. Compute the Obtained Value..162
e. Determine the Value Needed for the Rejection of the Null

Hypothesis ...163
f. Compare the Obtained Value to the Critical Value163
g. Decision Time..163

3. t Test for the “Context Precision” ..163
a. Statement of the Null and Research Hypothesis..................163
b. Set the Level of Significance or Type I Error Associated

with the Null Hypothesis...164
c. Select the Appropriate Test Statistic.....................................164
d. Compute the Obtained Value..164
e. Determine the Value Needed for the Rejection of the Null

Hypothesis ...164
f. Compare the Obtained Value to the Critical Value164
g. Decision Time..164

D. DISCUSSION ...164

VII. SUMMARY, CONCLUSIONS AND LESSONS LEARNED..............................167
A. SUMMARY ..167
B. EVALUATION ..168
C. LESSONS LEARNED...169
D. FUTURE WORK...170
E. CONCLUSIONS ..171

APPENDIX...173
A. ACRONYM TABLE..173
B. JAVA EXAMPLE CODE – “INTERFACING WITH THE RACER

SERVER” ...174

LIST OF REFERENCES..177

INITIAL DISTRIBUTION LIST ...183

 xi

LIST OF FIGURES

Figure 1. The Semantic Web Layers ...8
Figure 2. RDF Triple Model..11
Figure 3. Multiple RDF Statements Interconnected..12
Figure 4. Sample RDF Statement..16
Figure 5. Sample Namespace Declaration ..19
Figure 6. Example OWL Meta Data ...20
Figure 7. OWL Class Definition by Name..21
Figure 8. Basic Subclass Specification..22
Figure 9. Disjoint Classes..23
Figure 10. Instantiating OWL Individuals ..23
Figure 11. Property Restriction Using Domain and Range...24
Figure 12. Property Subsumption Examples...25
Figure 13. Property Restriction in Class Description..26
Figure 14. Transitive Property Defined...27
Figure 15. Symmetric Property Defined ...28
Figure 16. Functional Property Defined..29
Figure 17. InverseOf Property Defined..30
Figure 18. Inverse Functional Property Defined ...31
Figure 19. owl:someValuesFrom Example ..32
Figure 20. owl:someValuesFrom & owl:allValuesFrom Example33
Figure 21. Cardinality Example ..33
Figure 22. owl:hasValue Example ..34
Figure 23. owl:equivalentClass Example..35
Figure 24. owl:sameAs Example...36
Figure 25. Individual Equivalence Using Functional Property...36
Figure 26. owl:differentFrom Example...37
Figure 27. owl:AllDifferent & owl:distinctMembers Example ..37
Figure 28. owl:intersectionOf Example ..38
Figure 29. owl:unionOf Example..39
Figure 30. owl:complementOf Example ...39
Figure 31. owl:complementOf & owl:intersectionOf Example ..40
Figure 32. Enumeration Example..40
Figure 33. Ontology Spectrum ..46
Figure 34. Boehm's Development Spiral...52
Figure 35. Simple Class Hierarchy..55
Figure 36. Progression of the Class Hierarchy..58
Figure 37. Disjointed Classes..59
Figure 38. Two Types of Properties..61
Figure 39. Geography Properties...61
Figure 40. Inverse Property ...62
Figure 41. Individual Attributes of Inverse Properties..63
Figure 42. Transitive & Symmetric Properties ..64

 xii

Figure 43. Difference between Inverse and Symmetric Properties...................................65
Figure 44. Attributes of a Functional Property..66
Figure 45. Attributes of an Inverse Functional Property...66
Figure 46. Functional and Inverse Functional Properties..67
Figure 47. Existential Restriction in OWL..69
Figure 48. Existential Restriction Example...69
Figure 49. Universal Restriction in OWL ...70
Figure 50. Universal Restriction Example ..70
Figure 51. Definitions of IslandCountry and LandlockedCountry....................................71
Figure 52. Definitions of Archipelago and ArchipelagoCountry......................................72
Figure 53. New Definition of ArchipelagoCountry ..73
Figure 54. New Definitions of IslandCountry and LandlockedCountry74
Figure 55. Selecting the Property Range Type..75
Figure 56. Defined Class Example..77
Figure 57. Necessary vs. Necessary & Sufficient Conditions...78
Figure 58. Definition of CoastalCountry in OWL..78
Figure 59. Intersection Class vs. Union Class ...79
Figure 60. Ontology Before Racer Classification ...81
Figure 61. Ontology After Racer Classification..82
Figure 62. Example of the Individual Florence...84
Figure 63. Importing Ontologies with Protégé..85
Figure 64. Classes and Properties from Imported Ontology ...86
Figure 65. Google Search Results ...93
Figure 66. Protégé View of the Wine OWL Ontology..94
Figure 67. OAKDA Search Screen ...96
Figure 68. List of Knowledge Base Search Results ..96
Figure 69. OAKDA View of Red Bordeaux Class ...97
Figure 70. OAKDA View of Medoc Class ...98
Figure 71. OAKDA View of Millicent Individual ..100
Figure 72. OAKDA View of Mickey Individual ..101
Figure 73. Adding Terms to the Search List ...102
Figure 74. OAKDA Web Search Parameter List ..103
Figure 75. Web Search Results ...103
Figure 76. Island Country from the Geography Ontology ..105
Figure 77. Madagascar Individual Centered View..106
Figure 78. OAKDA Component Messaging Pathways...130
Figure 79. OAKDA Client / Web Server Interaction..131
Figure 80. OAKDA Home Page..132
Figure 81. Client interaction with OAKDA Database ..133
Figure 82. Client Applet Interaction with Racer Server..134
Figure 83. Graphical Visualization of the Cartoon Star Ontology..................................135
Figure 84. Interaction between Client Applet and Database...136
Figure 85. Client Interaction with Google Web Services ...138
Figure 86. OAKDA Web Search Results..138
Figure 87. Home Page Sequence Diagram..139

 xiii

Figure 88. Ontology Search Sequence Diagram ...140
Figure 89. Ontology Search Results Page Sequence Diagram..141
Figure 90. OWL Elements Directly Related to CLASS Type ..143
Figure 91. OWL Elements Directly Related to INDIVIDUAL Type143
Figure 92. OWL Elements Directly Related to PROPERTY Type144
Figure 93. Ontology Exploration Function Sequence Diagram......................................145
Figure 94. Ontology Node Selection for Search Sequence Diagram..............................146
Figure 95. Web Search Pre-Processing Page Sequence Diagram...................................147
Figure 96. Example Logical “AND” Search Syntax...149
Figure 97. Example Logical “OR” Search Syntax ..149
Figure 98. Example of Logical “OR” and REMOVE Search Syntax149
Figure 99. Google Search Page Sequence Diagram..150

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

LIST OF TABLES

Table 1. List of Common Namespaces ..13
Table 2. RDF Class Constructs ..14
Table 3. RDF Property Constructs...15
Table 4. Meta Data Constructs...20
Table 5. XML Schema Datatypes ..27
Table 6. Construct for Necessary vs. Necessary & Sufficient Conditions35
Table 7. OAKDA Multi-Tier Component Matrix..115
Table 8. Preliminary String Match Matrix...125
Table 9. Metadata Descriptions for Indexed OWL-DL Content Table128
Table 10. Example data for Indexed OWL-DL Content Table......................................128
Table 11. Metadata Descriptions for Selected Search Term Table................................129
Table 12. OAKDA Component Physical Location Matrix..129
Table 13. OWL Element Transformations...148
Table 14. Definition of Experiment Data...157
Table 15. Participant Search Tasks ..158
Table 16. Experiment Data Results..160

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 xvii

ACKNOWLEDGMENTS

We would like express our sincere gratitude to Dr. Magdi Kamel for his guidance

and insight, but most especially his patience, without which this project could not have

been completed.

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

 xix

EXECUTIVE SUMMARY

The World Wide Web (WWW) is an easily accessible source of information for

students, professionals, researchers, as well as the general public. However, the volume

of information available through the Web is so overwhelming that it is not unusual to get

tens of thousands of "hits" when conducting a relatively simple search. Improving Web

searches has, therefore, become an important and potentially lucrative area of research

and development. Since the current Web lacks embedded semantics which allow

machines to decipher the true content of the Web pages, as Tim Berners-Lee envisions

for the “Semantic Web”, most Web search portals use brute force techniques based on

keyword matches mapped to indexed Web content. While the enormous speed of search

engines improves the efficiency of such methods, effectiveness is not improved.

The objective of this thesis is to construct an ontology-based application to help

users identify the most pertinent keywords for a search. By navigating ontologies that

describe domains of interest, users are assisted in expanding the relevant set of key terms

that will aid the search engines in narrowing or refocusing a Web search. Specifically,

the thesis develops an ontology-aided Web search assistant prototype to help users

enhance the relevance and precision of the returned results through the use of context

provided by ontologies. An experiment to measure whether the developed application

benefits the end user is also conducted as part of this thesis.

This thesis is organized as follows. Chapter II is dedicated to understanding the

semantics and syntax of RDF and OWL. Although many ontology development tools

hide the details of OWL syntax, an ontology developer must have a good understanding

of the language in order to construct a valid ontology. Chapter III describes the proposed

methodology for building an ontology. It details a seven-step approach for developing

OWL based ontologies. A geography domain is used to illustrate OWL constructs and

for developing a complete geography ontology for use in the OAKDA application.

Chapter IV discusses the use of onotologies as knowledge bases in the OAKDA

application. It specifically describes three example scenarios of using ontologies to

 xx

discover domain knowledge and create intelligent Web searches. Chapter V details the

architecture and construction of the OAKDA application. This chapter describes in detail

the components used to build the prototype application and how they communicate with

each other within the architecture of OAKDA. Chapter 6 tests the main thesis research

question: Can an ontology-based Web search application increase the effectiveness of

Web search results over existing approaches for those searches that require a deep

contextual knowledge of the domain of interest? The experiment compares the

effectiveness of the results of Web search queries formulated by study participants using

the OAKDA application with those obtained by the same participants using the widely

popular Google search engine. The results show that OAKDA and the ontologies which

it implements have a statistically significant positive effect on the precision of web search

queries generated by the participants in the experiment. Finally Chapter 7 concludes the

thesis by summarizing our effort to develop a tool to help users improve their Web

searches. The chapter discusses the application's effectiveness, the lessons learned, and

possible future enhancements.

 1

I. INTRODUCTION

A. BACKGROUND
The World Wide Web (WWW) is an easily accessible source of information for

students, professionals, researchers, as well as the general public. However, the volume

of information available through the Web is so overwhelming that it is not unusual to get

tens of thousands of "hits" when conducting a relatively simple search. Improving Web

searches has, therefore, become an important and potentially lucrative area of research

and development. Since the current Web lacks, for the most part, embedded semantics

which allows machines to decipher the true content of the Web pages, as Tim Berners-

Lee envisions for the “Semantic Web”, most existing search techniques must use brute

force based on keyword matches to find related Web pages. While the enormous speed of

search engines improves the efficiency of such methods, effectiveness is not improved.

 We define an effective search as one returning to the user a manageable set of

highly relevant results. More formally, an effective search returns a results set with a

high degree of “aboutness.” Aboutness is broadly defined as a degree in which a set of

returned resources is “about” a particular domain of interest. For instance, “if a system

determines that a document d is topically related (i.e. about) to query q, then the

document is returned to the user.” [Bruza et al., 2000, 1] Unfortunately, the current

technology’s inability to identify the true context of Web sites makes it difficult to

determine the aboutness of any resource. However, the aboutness of Web search results

can be improved if there is an appropriate set of search terms that narrows the query

match results to the most relevant sets of domain resources.

Broad keywords or one-word searches will often result in a large number of hits,

many of them irrelevant. Conversely, using the appropriate keyword(s) will result in

high degree of aboutness in the returned set, therefore resulting in a highly effective

search. In order to take advantage of currently available search engines to return user-

specific relevant results, an intelligently crafted list of keywords and phrases needs to be

formed. To develop such a list, it is necessary to have sufficient knowledge of the

domain of context. Unless the user is a subject matter expert, finding the relevant and

 2

related terms of a domain may be difficult or even erroneous. An ontology, which is

model of a domain of context, can fill the role of a domain expert and support the

identification of precise and relevant keywords.

B. OBJECTIVES
As discussed, an effective means for obtaining more effective Web search results

is to have a comprehensive understanding or knowledge of the context of the search

term(s). The availability of a domain knowledge in conjunction with the search terms

would be extremely useful for determining an appropriate set of search terms, thus

retrieving the most appropriate Web resources. In order to gain contextual knowledge,

ontologies, defined as "specification of conceptualization," [Gruber, 1993, 1] can be

mined to discover relevant information about the domain of interest. Specifically, this

thesis refers to an ontology as a system of knowledge representation that allows machines

and humans to understand the definitions of concepts and the relationships between them.

The authors propose ontologies as an appropriate knowledge representation system that

can be used to create search queries with a greater aboutness value.

The objective of this thesis is to construct an ontology-based application to help

users identify the most pertinent keywords for a search. By navigating ontologies that

describe domains of interest, users are assisted in finding a relevant set of key terms that

will aid the search engines in narrowing, widening, or refocusing a Web search.

Specifically, the thesis develops an ontology-aided Web search assistant prototype to help

users enhance the relevance and precision of the returned results through the use of a

context provided by ontologies associated with each search.

C. THE RESEARCH QUESTION

The primary research question of this thesis is: Can an ontology-based

application be built to narrow, expand, refine and increase precision of Web search

terms? In order the address the primary question, the thesis will also address several

secondary questions. First, what is an appropriate approach for accessing and

processing of contextual information of an OWL knowledge base? Second, what is the

 3

most appropriate architecture for the prototype application? Third, how can an ontology

inference engine interface with the application? Last, is there a method of visually

rendering the ontologies for greater usability, navigation and comprehension of domain

knowledge?

The ability to answer these questions will depend largely on finding and determining the

necessary software components and building the interface capabilities between them.

The challenge will be to learn the necessary technologies and skills to develop the most

appropriate architecture and implementation.

D. SCOPE, LIMITATIONS AND ASSUMPTIONS
The scope of this thesis is to research and understand ontologies, their

development languages and methodologies, build, and test an ontology-based Web

application that aids users in designing search term lists. While the realization of the

Semantic Web would allow search engines or agents to process all Web resources based

on their content rather than as string of characters, this vision requires redevelopment of

all Web sites currently available. The application proposes an interim solution for Web

search by employing ontologies as its knowledge system for discovery and search results

enhancement using current Web technologies.

The success of the application is contingent on the availability and reliability of

ontologies for domain knowledge representation. Although at the time of this thesis,

libraries of ontologies are still limited, the prevalence and popularity of ontologies is

growing in various fields, both in academia and commerce. It is the authors' belief that

applications, such as the one developed here, further encourage the growth and validity of

ontologies and suggest a usable architecture for building applications which operate in

this milieu.

It is assumed that the readers have a working knowledge of HTML and XML, as

well as have a general understanding of software systems. Readers are also assumed to

be familiar with Web search engines, such as Google and Yahoo!, and how Web search is

performed using one or more terms. Furthermore, it is the authors' argument that

 4

ontologies' contextual domain knowledge provides the user with a selection of domain-

relevant search terms which narrows and improves the search results.

E. METHODOLOGY
The methodology used in the development of this thesis consists of two parts.

The first part is dedicated to the research and understanding of ontologies, languages, and

methodologies for ontology development. This is achieved by first understanding and

mastering existing semantic languages for the Web, namely Resource Description

Framework (RDF) and Web Ontology Language (OWL). Second, a review of literature

on ontologies is conducted, within and outside the vision of the Semantic Web,

emphasizing their important contribution to knowledge representation in information

technology. Third, existing development methodologies are adapted to construct OWL

ontologies, and a seven-step methodology for constructing valid OWL ontologies is

proposed. Fourth, a sample ontology is built to demonstrate the semantics of RDF and

OWL, as well as the proposed ontology development methodology. Last, examples are

demonstrated to show how ontologies can be used to discover knowledge and aid the

construction of relevant search terms.

The second part of the methodology used in this thesis is related to the

development of the prototype Ontology Aided Knowledge Discovery Assistant

(OAKDA), pronounced "Oak D-A", application that will assist users with discovering

domain knowledge and designing their Web search terms for the most relevant results. It

is best described as a prototype software development methodology. First, a multi-tier

architecture is designed for the application. Second, a reasoning engine is incorporated,

using TCP/IP interface model, to inference ontologies. Third, ontology concepts and

relationships are graphically displayed and can be traversed in any direction. Last, a user

function to select relevant terms from the ontology and build a search term list is

constructed and used to query the Google Web search portal and return matched results.

In order to test the research question, this thesis will also examine whether ontology-

aided Web searches perform better than those relying only on a search engines such as

Google. While it is difficult to measure the accuracy or aboutness of search results, the

 5

research design will measure the answer precision and content-relatedness of the returned

Web pages of the test questions in order to determine the performance of the ontology-

aided search tool developed in this thesis.

F. ORGANIZATION OF THE STUDY
This thesis is organized as follows. Chapter II is dedicated to understanding the

semantics and syntax of RDF and OWL. Although many ontology development tools

hide the details of OWL syntax, an ontology developer must have a good understanding

of the language in order to construct a valid ontology. Chapter 3 describes the proposed

methodology of building an ontology. It details a seven-step approach for developing an

OWL ontology. A geography domain is used to illustrate OWL constructs and for

developing a complete geography ontology for use in the OAKDA application. Chapter

4 discusses the use of ontologies as knowledge bases in the OAKDA application. It

specifically describes three example scenarios of using ontologies to discover domain

knowledge and create intelligent Web searches. Chapter 5 details the architecture and

construction of the OAKDA application. This chapter describe in detail the components

used to build the prototype application and how they communicate with each other within

the architecture of OAKDA. Chapter 6 tests the thesis research question by comparing

the precision and content-relatedness of the ontology-aided searches to those performed

solely by search engines. Finally Chapter 7 concludes the thesis by summarizing our

effort to develop a tool to help users improve their Web searches. The chapter discusses

the application's effectiveness, the lessons learned, and possible future enhancements to

the application.

 6

THIS PAGE INTENTIONALLY LEFT BLANK

 7

II. RDF AND OWL ONTOLOGIES OVERVIEW

A. INTRODUCTION
An ontology can be defined as a formal explicit description of concepts in a

domain of discourse, properties of each concept describing various features and attributes

of the concept, and restrictions on these properties that are specified by semantics, or

rules, that follows the “rules” of the domain of knowledge. For these reasons, ontologies

are useful as knowledge bases (KB) for an application attempting to add context to a

particular search word or phrase. By navigating the ontologies, we can understand the

context of a particular concept as well as the relationships it has with other concepts.

This chapter focuses on the syntax and construct of ontology languages. The

World Wide Web Consortium (W3C) has created a language specifically for ontologies,

known as the Web Ontology Language (OWL), built upon previous Web languages

including the syntactic foundation of the Web, XML, and Resource Description

Framework (RDF)1. OWL is considered an extension of RDF, and as it will be evident in

the discussion below, OWL ontologies use RDF syntax to define their resources.

The importance of RDF and, in particular, OWL to building ontologies is the

ability to add semantics around their concepts that is not possible with XML. XML

provides meta data to describe the content of its documents. However, the description

alone does not explain anything about the relationship of the content; it is void of

semantics. The goal of using ontologies is to move beyond the meta data to a more

semantically aware systems. RDF helps to accomplish this by providing a mechanism for

creating meta data about resources on the Web, i.e., any information that can be retrieved

or simply identified on the Web. RDF was developed for processing information by

applications, rather than simply displaying it for humans. It creates a common

framework for exchanging information across application without losing any of their

meanings. However, RDF does not provide much capability for semantics, leading to the

1 For the purpose of this thesis, a working knowledge of XML will be assumed. While certain

components of XML will be defined, detailed explanation of the syntax will not be discussed.

 8

development of OWL.2 OWL is able to extend RDF with its semantic constructs,

allowing it to define and instantiate concepts and their relationships within an ontology.

Tim Berners-Lee’s vision of the Semantic Web is to move beyond the mere data

presentation and meta data using HTML and XML, respectively. He argues that in order

for the Semantic Web to work, systems need to have access to structured information

along with a set of inference “rules” for processing automated reasoning [Berners-Lee et

al., 2001, 2]. Berners-Lee proposed a layered architecture for the Semantic Web as

represented in Figure 1. As the figure shows, newer technologies stack on top of

previous ones to achieve the realization of the Semantic Web. OWL was not part of the

original stack because it was in its infant stages when Berners-Lee proposed the

architecture. However, as Figure 1 shows, OWL fits naturally between the RDF and

Ontology layers.

Figure 1. The Semantic Web Layers

At the bottom of the stack are the simplest forms of web identifiers, the Uniform

Resource Identifier (URI) and Unicode. URI provides a means for resources to be

2 OWL was derived from an earlier ontology language developed by DARPA called DAML+OIL.

More information on DAML+OIL can be found on www.w3.org/TR/daml+oil-reference, April 2005.

OWL

 9

uniquely identified and retrieved on the web. Unicode is an extension of ASCII that has

the ability to encode the characters of all languages, rather than only the Roman alphabet.

The second layer is made up of XML and namespaces. XML is a set of syntax

rules for structured documents. However, it does not enforce any semantic constraints on

the documents. Namespaces are extensions of XML and they are a mechanism for

differentiating elements and attributes of a particular vocabulary in order to make them

globally unique. Namespaces allow different XML documents to be combined without

ambiguity.

The third layer of the stack is XML query (XQuery) and XML schema. As the

name implies XQuery is a query language for XML documents. XQuery was designed to

query XML-based data sources as one would do to databases. XML Schema is a

definition language that limits the conforming XML documents to a specific vocabulary

and hierarchical structure. The fourth layer consists of RDF model and syntax. RDF is

an XML-based language used to describe objects or “resources,” as well as the

relationship between them. This provides a data-model, known as RDF Triple, using

simple semantics and the resources are accessed using URIs. RDF Schema is a language

that describes RDF classes and properties, with semantics that specify the hierarchies of

these classes and properties.

The fifth layer is the ontology itself. Ontologies are the key components to the

Semantic Web because they contain the domain “knowledge” that defines concepts and

their relationships to each other. Although RDF does have some capabilities to represent

relationship between resources, it lacks the semantic richness and inference capacity that

the OWL provides. OWL is built on RDF, adding greater vocabulary for specifying

relationships between classes, individuals, property characteristics, and enumerated

classes, that allows for developing rich ontologies.

The next two layers, Rules/Query and Logic provide mechanisms for querying

and inferencing to provide information about the domain of interest. Although

description logic of OWL lacks full expressiveness, it does have computational

completeness, which is not possible with RDF.

 10

Little is currently understood about the top two layers of the Semantic Web stack,

the Proof and Trust, but they are expected to be the focus of future development efforts.

The idea behind Proof and Trust is that when information is retrieved from the Semantic

Web, it must be proven and trusted as the right answer. For instance, if one source states

that the country of Armenia is in the continent of Europe and another source states that it

is in the continent of Asia, which source should be trusted? These inconsistencies would

make it impossible for the success of the Semantic Web. However, as the focus shifts to

proof checking mechanisms and digital signatures, these layers will provide a step closer

to Berners-Lee’s goal for the next generation of the Web [Palmer, 2001, 11].

 The remainder of this chapter addresses the syntax and constructs of RDF and

OWL. It is organized as follows. Section B is a brief overview of RDF while section C

discusses the syntax and constructs of OWL.

B. RDF PRIMER
RDF was developed to represent information about Web resources. The term

“resource,” which has a broad meaning, can be simply thought of as the electronic file

available out on the Web [Daconta et al., 2003, 12]. Rather than just displaying

information for human consumption, the RDF was developed to allow machines and

applications to process information. Such an exchange of information is possible with

the RDF common framework, which uses parsers and data processing mechanisms. The

RDF capabilities to uniquely identify resources and share information across all

platforms lay the core foundation for semantically richer languages, such as OWL.

1. RDF Triple
There are three necessary RDF components for identifying a piece of information.

Known as the RDF triple, it consists of subject, predicate, and object. Consider a

common English statement below.

http://www.ontology.net/geography.html has a creator whose value is Ann Lee.

The above statement is broken down into the RDF triple elements as follows.

 11

1. SUBJECT: http://www.ontology.net/geography.html
2. PREDICATE: creator
3. OBJECT: Ann Lee

In order for machines to understand the meaning or “knowledge” of this statement, the

components of the English sentence must be formatted in such a way that they are

machine-consumable. RDF accomplishes this by using what the URI references

(URIrefs). URIrefs are RDF’s primary mechanism for specifying subject, predicate and

object in its statements. An URIref has two parts, namely an URI joined with a fragment

identifier. For example, http://www.ontology.net/geography.html#Country is a

combination of the URI http://www.ontology.net/geography.html and the fragment

identifier Country separated by the # sign. Unlike Uniform Resource Locators (URLs),

URIrefs do not require direct connection to an actual Web resource.

The RDF triples are often depicted as a graph using nodes and arcs. For example,

the English statement above is represented by the graph shown in Figure 2.

Figure 2. RDF Triple Model

As the figure shows, the subject and object are represented by nodes, and the predicate by

an arc from the subject to the object node. Also, the predicate and object are specified by

an URIref, rather than simple values of “creator” and “Ann Lee”, as in the English

statement above. The URIrefs uniquely associates any property or value to a particular

resource identifier. That is, the usage of the property “creator” may have different

meanings for different developers or applications. In order to clarify the exact meaning

of “creator” as implied by the developer, the term is associated with an URIref to make

the description unambiguous to the user. Therefore, depicting the predicate as

http://purl.org/dc/elements/1.1/creator

http://www.ontology.net/geography.html

http://www.ontology.net/staffid/12345

 12

“http://purl.org/dc/elements/1.1/creator” helps distinguish it from other meanings of

“creator,” such as the one with resource of “http://www.anotheruser.org/term/creator.”

Furthermore, the use of URIref to identify the property makes it possible to augment

additional information. For example, the object URIref of a particular RDF statement

may be used as a subject of another RDF statement.

It is important to understand that one resource may be part of several RDF

statements. Consider the diagram below.

Figure 3. Multiple RDF Statements Interconnected

Figure 3 illustrates how multiple statements interconnect with one another, and provide

multiple layers of information for a given node. Each arc corresponds with a RDF triple.

Thus, Figure 3 represents four separate RDF triple statements. Also, even though literals

may not be used as subjects or predicates, objects may take on a constant value. The node

http://www.testsite.net/pic.jpeg, representing a picture file, has for its creation date the

literal value of “February 10, 2005.”

Like XML, RDF uses namespaces to abbreviate for URIs. For example, the

prefix myont is the namespace representation for the URI

http://www.ontology.net/geography#. Future references to this resource, then, may be

written as myont:, followed by the fragment identifier such as myont:Country.

Some common namespace prefixes are as listed in Table 1.

http://somesite.org/conta

http://purl.org/dc/elements/1.1/cre

http://purl.org/dc/elements/1.1/cre

http://www.ontology.net/geography.

http://www.ontology.net/staffid/123

http://somesite.org/creationD

http://www.testsite.net/pic.jp

February 10, 2005

 13

Prefix URI
rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#
rdfs: http://www.w3.org/2000/01/rdf-schema#
dc: http://purl.org/dc/elements/1.1/
owl: http://www.w3.org/2002/07/owl#
xsd: http://www.w3.org/2001/XMLSchema#

Table 1. List of Common Namespaces

Within the RDF namespace, there are defined constructs that denote different

relationship semantics. For instance, the property rdf:type is used to define the

various kinds of relationships that exist between resources. This is especially useful with

RDF Schema specification vocabularies of Class and subClassOf, where

rdf:type is analogous to the instanceOf property in object-oriented languages.

RDF constructs, such as rdf:type, will be discussed further in the sections below.

2. RDF Schema
RDF Schema, the semantic extension of RDF, allows for the development of an

application-neutral vocabulary for defining class and subclass hierarchies, as well as

properties to describe these classes. Unlike object-oriented languages that RDF Schema

is often compared to, the RDF vocabulary defines properties in terms of resource classes.

That is, one can create new properties out of existing ones simply by adding to the

original property specifications without redefining the original description and

restrictions of the class. This is the benefit of RDF Schema's property-centricity, having

the ability to extend the existing resource descriptions.

The facilities of RDF Schema are predefined with its own set of RDF vocabulary

under the resource, http://www.w3.org/2000/01/rdf-schema#. The vocabulary may be

referenced using the rdfs namespace as specified above. The RDF examples below will

use the rdfs and rdf (URI: http://www.w3.org/1999/02/22-rdf-syntax-ns#)

namespaces.

3. Classes
RDF Schema categorizes similar “kinds of things” into classes. Syntactically, a

class in RDF Schema is any resource that has the rdf:type property value of

rdfs:class. The members of a class, known as instances, are also known as class

 14

extensions. Multiple classes may have the same set of instance, which have all sets of

properties from each class. Furthermore, a class may be defined by a set of its own

extensions and/or extensions of other classes.

A Subclass is a child class, which inherits all the characteristics from its parent

classes. If class B is a subclass of class A, then all the instances of B are also instances of

A. The superclass-subclass relationship is called an "is-a" relationship, meaning an

instance of class B is also an instance of class A. If class C is also a subclass of class A,

then class C is a sibling class to class B. They share all the same traits inherited from

class A, along with their unique properties that differentiate them. The syntax

rdfs:subClassOf is used to define a subclass. Table 2 lists class relevant RDF

constructs.

RDF Construct Description
rdf:type Specifies that a given resource is an instance of some class.
rdfs:subClassOf Specifies that all the instances of one class are also instances

of another class.
rdfs:label Used to provide human-readable names for the resources.
rdfs:comment Used to provide human-readable descriptions of the

resources.
Table 2. RDF Class Constructs

4 Properties
RDF property is the predicate relationship between the subject and object

resources. All RDF properties have the rdf:type value of rdfs:Property. Like

classes, properties are arranged in hierarchies where rdfs:subPropertyOf construct

denotes a taxonomic, superclass-subclass relationship. Thus, if the property Y is a

subproperty of X, then all resources related to property Y are also related to property X.

There are three RDF Schema syntax used to define properties. The range of a property,

specified by rdfs:range, indicates the property’s allowed set of values. The

property’s domain, rdfs:domain, is used to show that the property is applied to a

designated class or set of classes. These property semantics, further defined in Table 3,

are used to describe RDF properties.

 15

RDF Construct Description
rdfs:subPropertyOf Specifies that all the properties are also subproperties of

another property.
rdfs:range Specifies the class instance or a literal that a given property

must take one as its value.
rdfs:domain Specifies the class that “owns” the property. That is, it

associates the property with the class it modifies and
asserts that the subjects of such property statements must
belong to the instance of the class.

Table 3. RDF Property Constructs

5. Other RDF Vocabularies
RDF containers are predefined syntax used to represent collections of resources.

There are three container vocabularies in RDF Schema, namely rdf:Bag, rdf:Seq,

and rdf:Alt, which are specified under the class rdfs:Container. The bag

(rdf:Bag) defines a group of resources or literals where the order of its members is not

significant. The sequence (rdf:Seq) is a group resources or literals where the order of

them are, in fact, relevant, whether it is alphabetical, numeric, or other types of ordering.

The alternative (rdf:Alt) is a group of resources or literals that are “alternatives” to

the other containers. That is, all the members are alternates of one another. All the

containers described above allow duplicate members in its list.

RDF collection differs from the RDF containers in that it is a closed list. In other

words, it is an exhaustive list of members, exclusive to other possible candidates. In

specifying the RDF collection, the syntax rdf:List describes the list while

rdf:first property refers to the first-member relationship and rdf:rest property

refers to the rest-of-list relationship.

Putting all the RDF Schema vocabularies together, here is an example of an RDF

document in Figure 4.

 16

Figure 4. Sample RDF Statement

The RDF statement in Figure 4 defines both classes and properties. The classes are

River and Stream identified by the rdf:ID syntax, where River is a subclass of

Stream and Stream is a subclass of NatuallyOccurringWaterSource, which

is defined elsewhere in the RDF document. Also, there are two properties,

emptiesInto and hasLength, specified by rdf:ID. While both properties have a

domain value of class River, the range of emptiesInto is the BodyOfWater class

and the range of hasLength is a literal string. Thus, instances of River having these

properties must select an instance of BodyOfWater as the value for emptiesInto

property and a literal string for the value of hasLength property.

Although RDF provides certain semantics for knowledge representation for

systems, it still lacks the semantic richness for creating meaningful ontologies and

capability for inferences. To this end OWL was developed to address the semantic

limitations of RDF.

<?xml version=”1.0”?>
<rdf:RDF xmlns:rdf=http://www.w3.org/1999/02/22-rdf-syntax-ns#
 xmlns:rdfs=http://www/w3/org/2000/01/rdf-schema#
 xml:base=http://www/geodesy.org/water/naturally-occurring>

<rdfs:Class rdf:ID=”River”>
 <rdfs:subClassOf rdf:resource=”#Stream”/>
</rdfs:Class>

<rdfs:Class rdf:ID=”Stream”>
 <rdfs:subClassOf rdf:resource=”#NaturallyOccurringWaterSource”/>
</rdfs:Class>

<rdf:Property rdf:ID=”emptiesInto”>
 <rdfs:domain rdf:resource=”#River”/>
 <rdfs:range rdf:resource=”#BodyOfWater”/>
</rdfs:Property>

<rdf:Property rdf:ID=”hasLength”>
 <rdfs:domain rdf:resource=”#River”/>
 <rdfs:range rdf:resource=”http://www.w3.org/2000/01/rdf-
 schema#Literal”/>
</rdfs:Property>
…
</rdf:RDF>

 17

C. WEB ONTOLOGY LANGUAGE (OWL): BUILDING AN ONTOLOGY
OWL builds on RDF and RDF Schema, with enhanced capability to describe

classes and properties. Like RDF, OWL uses URIs and description framework for a wide

distribution across systems, necessary scalability for the web, compatible Web standards,

extensibility and openness. OWL’s rich semantics provide better interpretability than

XML, RDF, and RDF Schema, making it ideal as a platform independent, machine-

process language. OWL is the most appropriate language available to express explicitly

the meaning of terms in a domain as well as relationships between them.

There are three OWL sublanguages, namely OWL Lite, OWL DL, and OWL Full,

in increasingly expressive sequence.

OWL Lite, the least expressive of the sublanguage, is used primarily to support

classification hierarchy and simple restriction features. And, while OWL Lite allows

cardinality restrictions, it is limited to the values of 0 and 1. This sublanguage is an ideal

choice for developing quick and simple taxonomies.

OWL-DL supports maximum expressiveness while maintaining the reasoning

system’s computational completeness and decidability. In other words, all inferences are

guaranteed for computation and these computations will be completed in a finite amount

of time. With some exceptions, such as type separation3, OWL-DL includes all

constructs of the OWL language and it is derived from its conformity to description

logic. OWL-DL was specifically designed to allow logic inferencing and has ideal

reasoning system computational properties.

OWL Full allows maximum expressiveness and full capability of the RDF syntax

without the computational guarantees. An OWL Full class may be treated as an

individual and a collection of individuals simultaneously. Also, OWL Full permits an

ontology to add meanings of pre-defined (RDF or OWL) vocabularies. However, most

reasoning application do not support all the features of OWL Full in order to maintain its

computation decidability and completeness.

3 This is when class cannot take on the role of an individual or property; or, property cannot take on

the role of a class or individual.

 18

When choosing the most appropriate OWL ontology sublanguage, developers

should evaluate the usage of the ontology. The need for expressiveness and

computational simplicity usually determines the choice between OWL Lite and OWL

DL. Meanwhile, the choice between OWL DL and OWL Full depends on the need for

RDF Schema’s meta-modeling facilities. However, the developer should understand the

trade-off between greater flexibility and reasoning capability when choosing the right

sublanguage of OWL.

For the purposes of this thesis and the Ontology Aided Knowledge Discovery

Assistant (OAKDA) application developed in this thesis, OWL-DL will be the designated

sublanguage. Its computational completeness and decidability are crucial to the ontology

development and use for the OAKDA application. However, most of the OWL class

syntax and constructs discussed below applies to all sublanguages of OWL. It is in the

description of OWL properties, restrictions, and complex classes where the focus will

shift to OWL-DL. Unless specified otherwise, reference to OWL should be assumed to

mean OWL-DL.

Throughout this chapter and the next, many examples will be used to illustrate the

syntax, constructs and methodology for building ontologies. The goal at the end of these

two chapters is to develop a sample ontology that will be used in the OAKDA

application. For the purpose of this thesis, the authors chose geography as the ontology

domain of context. The main motivation is its familiarity and a relatively high general

interest in the topic by many readers.

Numerous GUI based ontology editors exist for developing ontologies. These

editors simplify ontology development by generating the OWL code from the graphical

specification. In particular, Protégé4 is an ontology editor that ontology developers can

use without the knowledge of the syntax and constructs of OWL. Although Protégé does

hide the details of OWL, it is crucial for all OWL-DL ontology developers to understand

the constructs and semantics of OWL. Protégé will be used and referenced throughout

this thesis to illustrate and visually display examples of the Geography OWL ontology.

4 Protégé is an open-source application developed at Stanford University. More information is
available at http://protege.stanford.edu/index.html, May 2004.

 19

1. Namespaces and Ontology Headers
In developing an OWL ontology, it is typical to begin the document by stating the

set of vocabularies that will be used throughout the ontology. This is done by declaring

namespaces. Figure 5 shows namespace declarations for the Geography ontology.

Figure 5. Sample Namespace Declaration

The first is the default namespace, referring to the Geography ontology itself.

The next three namespaces are W3C’s predefined vocabularies. While the OWL

constructs are defined under http://www.w3.org/2002/07/owl, and since OWL is built on

RDF, RDF Schema, and XML Schema, all three URLs are listed as necessary

namespaces for building an OWL ontology.

Once the namespaces are listed, a set of assertions for the ontology can be

grouped under the tag, owl:Ontology. This is the place to list the meta-data

information about the ontology. Table 4 shows meta data constructs commonly used

under the owl:Ontology heading.

<rdf:RDF
 xmlns=”http://a.com/ontology/Geography#”
 xmlns:protege="http://protege.stanford.edu/plugins/owl/protege#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs=”http://www.w3.org/2000/01/rdf-schema#”
 xmlns:xsd=”http://www.w3.org/2000/10/XMLSchema#”
 xmlns:owl=”http://www.w3.org/2002/07/owl#”>

 20

Construct Description
rdf:about Specifies a name or reference of the ontology. If

the value of “”, then the default value is the base
URI which contains the ontology.

rdfs:comment Provides a place for comments and annotations
regarding the ontology.

owl:priorVersion Provides a capability for a version control system.
owl:imports Allows importing of other ontologies, with all of

their assertions, in the current ontology. This
should be used in coordination with the
namespace, which allows the references to the
imported ontologies.

owl:AnnotationProperty Provides to declare properties that are used as
annotations.

rdfs:label Allows natural language labels for the ontology.
Table 4. Meta Data Constructs

Example of these meta data constructs is demonstrated in the OWL statement in Figure 6.

Figure 6. Example OWL Meta Data

2. Basic Components of OWL
The basic components of OWL are classes, properties, individuals, and the

relationship between the individuals. These components are discussed in detail in the

following sections.

In OWL, classes may be defined in a variety of ways. Class description, as

termed by the W3C, allows six methods for describing a class:

 <owl:Ontology rdf:about="">
 <rdfs:comment>An example OWL ontology</rdfs:comment>
 <owl:priorVersion>
 <owl:Ontology rdf:about="
 http://a.com/ontology/02102004/Geography"/>
 </owl:priorVersion>
 <owl:imports
 rdf:resource="http://www/geodesy.org/water/naturally-
 occurring"/>
 <rdfs:comment>Developed as part of the OWL Ontology Development
 Tutorial by Ann Lee and Edward Powers.
 </rdfs:comment>
 <rdfs:label>Geography Ontology</rdfs:label>
 </owl:Ontology>

 21

1. A class identifier (URI reference)
2. A complete list of individuals that combined to form instances of a class

(enumeration)
3. A property restriction
4. An intersection of two or more class descriptions
5. An union of two or more class descriptions
6. A complement of a class description

The six types of class definition will be discussed in detail in the sections below.

3. Defining OWL Classes
Similar to RDF, the most basic component of OWL is the class. In creating an

ontology, classes are the mechanism for abstracting groups of resources that share similar

characteristics. An OWL class is associated with a set of individuals, known as the class

extension, which are instances of the class. It is crucial to distinguish between a class and

its class extension. Although they are related to each other, they are not equal. Thus, two

different classes can have the same instances without conflict. Those instances will have

characteristics of both classes.

The most straightforward method of defining a class is by specifying a name,

represented syntactically using an URI. All OWL classes belong to a superclass

owl:Thing. In other words, all the user-defined classes are subclasses of

owl:Thing.

For example, in the Geography ontology, the classes Ocean, Mountain,

and Country are defined in OWL as stated in Figure 7.

Figure 7. OWL Class Definition by Name

Here, the classes Ocean, Mountain, and Country are the named classes.

Class definitions are specified with owl:Class and the rdf:ID identifies the name.

owl:Class construct is a subclass of rdfs:Class, which an additional description

logic component5. Within the ontology document, references to these classes are stated

5 In OWL Full, these two statements, owl:Class and rdfs:Class, are equivalent.

<owl:Class rdf:ID="Ocean"/>
 <owl:Class rdf:ID="Mountain"/>
 <owl:Class rdf:ID="Country"/>

 22

as #Ocean, #Mountain, and #Country. OWL uses the RDF Schema syntax

rdf:ID to introduce the class name as part of the class definition.

The basic component of building a taxonomy of classes is the

rdfs:subClassOf construct. As in a tree structure, this syntax relates the specific

subclass to the general superclass. Thus, all the instances of the subclass are instances of

the superclass. This relationship is transitive so that if class B is a subclass of class A and

class C is a subclass of class B, then class C is a subclass of A. The OWL statements in

Figure 8 exemplify the subclass relationship.

Figure 8. Basic Subclass Specification

The examples in Figure 8 define two OWL classes, Mountain and Volcano.

It explicitly states that class Mountain is a subclass of BodyOfLand and class

Volcano is a subclass of Mountain. Therefore, by rules of subsumption, Volcano is

also a subclass of BodyOfLand, inheriting all the characteristics of BodyOfLand as

well as additional properties of Mountain.

There are two components to a class definition. The first part is the name

declaration, or reference, and the second part is the list of class description or restriction.

Furthermore, subclasses inherit the properties and their restriction from their parent

classes. And every restriction specified as part of the class definition further confines the

instances of that class. In other words, the individuals are the instances of the

intersection of all the restrictions of the class. Thus, in the Geography example, Volcano

is bound by all the properties of the Mountain and BodyOfLand classes in addition to its

own set of restrictions.

<owl:Class rdf:ID="Mountain"/>
 <rdfs:subClassOf rdf:resource="#BodyOfLand"/>
 …
 </owl:Class>

 <owl:Class rdf:ID="Volcano"/>
 <rdfs:subClassOf rdf:resource="#Mountain"/>
 …
 </owl:Class>

 23

a. Disjoint Classes (disjointWith)

When classes are disjointed from one another, they cannot share the same

individuals. In other words, if the classes Ocean and Lake are disjointed from each

other, they cannot have an individual that is a member of both classes.

Figure 9. Disjoint Classes

The OWL statement in Figure 9 specifies that the LandlockedCountry class

is disjoint from all the classes listed in the statement. However, this does not assert that

the listed classes are disjointed from each other. That is, by this description,

CoastalCountry is not disjointed with IslandCountry. In order to state mutual

disjointed relationships, every class must be asserted with the owl:disjointWith

relationship.

4. Individuals
As briefly discussed, the members or instances of classes are referred to as

individuals. There are two ways of defining an individual in OWL. The two statements

are identical in meaning.

Figure 10. Instantiating OWL Individuals

The first method of declaring an individual is by simple instantiating the class as

in the first statement in Figure 10. The second method uses rdf:type, like in RDF, to

link an individual to its class and it is a two-part statement. It should be clarified that

<Ocean rdf:ID="PacificOcean"/>

 Or
<owl:Thing rdf:ID="PacificOcean"/>

<owl:Thing rdf:about="#PacificOcean"/>
 <rdf:type rdf:resource="#Ocean"/>
</owl:Thing>

 <owl:Class rdf:ID="LandlockedCountry">
 <rdfs:subClassOf rdf:resource="Country">
 <owl:disjointWith rdf:resource="CoastalCountry"/>
 <owl:disjointWith rdf:resource="IslandCountry"/>
 <owl:disjointWith rdf:resource="PeninsulaCountry"/>
 <owl:disjointWith rdf:resource="ArchipelagoCountry"/>
 </owl:Class>

 24

these two statements do not need to be adjacent. In fact, they do not even need to be part

of the same ontology. Since Web ontologies are designed for distribution, they can be

augmented or imported within other ontologies. Thus, the instantiation and use of

individuals can occur in two separate ontology documents.

5. Properties
Properties assert general information about a class and specify concrete

information about individuals of that class. The sections below discuss the different

types of properties and how they are used as class restrictions.

a. Defining Properties
There are two types of properties, namely datatype and object properties.

Datatype properties specify the relationships between individuals and RDF literals or

XML Schema datatypes. Object properties represent the relationships between

individuals of one or more classes. Several methods can be used to create a property

relationship, whether it is datatype or object property. The most common method to

specify an object property is limiting the domain and range of the property to individuals

of certain classes. In Figure 11, the hasBoundary property has a range restriction of

all the individuals of the BodyOfLand class and a domain restriction of all the

individuals of BodyOfWater class.

Figure 11. Property Restriction Using Domain and Range

Unlike the hasBounday property, the hasBorder property in Figure

11 shows only a domain restriction. By not explicitly stating the range restriction within

the property definition, it is implied that all individuals, regardless of class will have the

the default range owl:Thing.

 <owl:ObjectProperty rdf:ID="hasBoundary">
 <rdfs:range rdf:resource="#BodyOfLand"/>
 <rdfs:domain rdf:resource="#BodyOfWater"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#hasBorder">
 <rdfs:domain rdf:resource="#BodyOfLand"/>
 </owl:ObjectProperty>

 25

Similar to classes, properties may be organized as a hierarchy. Likewise,

a property may be defined as a subproperty, or a specialization, of another property.

Figure 12 shows examples of the property subsumption using the construct

rdfs:subPropertyOf.

Figure 12. Property Subsumption Examples

Using rdfs:subPropertyOf, the hasOfficialLanguage object

property is a type of hasCountryDescriptor property, inheriting all of the parent

property's characteristics. The definition of hasCountryDescriptor is defined by

the domain and range restrictions. Although the hasOfficialLanguage property

inherits these restrictions from the parent property, by explicitly assigning a new range,

the Language class, it further restricts the possible individuals that can fill the value of

this property. Therefore, the range of this property is not merely the instances of the

CountryDescriptor class, as specified in the parent property, it is further confined

to the instances of the Language class.

Using property restrictions, it is now possible to expand on the simple

class definition. The class CoastalCountry, for example, includes a property

restriction as part of its definition.

 <owl:ObjectProperty rdf:ID="hasCountryDescriptor">
 <rdfs:domain rdf:resource="#Country"/>
 <rdfs:range rdf:resource="#CountryDescriptor"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="hasOfficialLanguage">
 <rdfs:range rdf:resource="#Language"/>

 <rdfs:subPropertyOf rdf:resource="#hasCountryDescriptor"/>
</owl:ObjectProperty>

 26

Figure 13. Property Restriction in Class Description

Consider the restriction listed under the second rdfs:subClassOf

syntax in Figure 13. This subclass declaration is of an unnamed class, or an anonymous

class, used as part of the CoastalCountry class definition. Under the anonymous

class description, the restriction uses the owl:minCardinality to state that the

individuals of this class must have at least one associated hasCoastline property

value. Thus, the complete definition of CoastalCountry states that all individuals of

this class are an instance of the Country class and meet the minimum cardinality

restriction of the hasCoastline property. More will be discussed about the

cardinality property in Section 7.b. of this chapter.

b. Properties and Datatypes

Datatype property values range between RDF literals (rdfs:Literal)

and XML Schema datatypes. Table 5 is the list of XML Schema types used with OWL

datatype properties.

 <owl:Class rdf:ID="CoastalCountry">
 <rdfs:subClassOf rdf:resource="#Country"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasCoastline"/>
 <owl:minCardinality rdf:datatype="&xsd;nonNegativeInteger">1

 </owl:minCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 …
 </owl:Class>

 27

xsd:string xsd:normalizedString xsd:boolean
xsd:decimal xsd:float xsd:double
xsd:integer xsd:nonNegativeInteger xsd:postiveInteger
xsd:nonPositiveInteger xsd:negativeInteger xsd:unsignedByte
xsd:long xsd:int xsd:short
xsd:unsignedLong xsd:unsignedInt xsd:unsignedShort
xsd:hexBinary xsd:base64Binary
xsd:dateTime xsd:time xsd:date
xsd:gYear xsd:gMonthDay xsd:gDay
xsd:byte xsd:gYearMonth xsd:gMonth
xsd:anyURI xsd:token xsd:language
xsd:NMTOKEN xsd:Name xsd:NCName

Table 5. XML Schema Datatypes

6. Property Characteristics
In addition to domains and ranges, other OWL constructs allow greater semantic

expressiveness. These OWL property characteristics provide the means for classification

and reasoning on the ontology.

a. Transitive and Symmetric Properties
OWL properties can take on transitive attributes. If a property is defined

as transitive to another property, the values of the property may have inferred

relationships with one another. Mathematically, a transitive property is expressed as:

P(a,b) and P(b,c) implies P(a,c)

In the Geography ontology, locatedIn is a transitive property. Figure 14 shows how

transitive property is defined in OWL.

\

Figure 14. Transitive Property Defined

 <owl:ObjectProperty rdf:ID="locatedIn">
 <rdfs:type rdf:resource="&owl;TransitiveProperty"/>
 <rdfs:domain rdf:resource="&owl;Thing"/>

 <rdfs:range rdf:resource="#PoliticalGeography"/>

 </owl:ObjectProperty>

 <Region rdf:ID="VaticanCity"/>
 <locatedIn rdf:resource="#Rome"/>
 </Country>

 <Region rdf:ID="Rome"/>
 <locatedIn rdf:resource="#Italy"/>
 </Country>

 28

The OWL statements in Figure 14 explicitly state that the individual

VaticanCity is located in individual Rome and that individual Rome is located in

individual Italy. Since locatedIn is defined as a transitive property, it is inferred

that VaticanCity is located in the region of Italy.

Another OWL property construct is the symmetric attribute. If a property

is designated as symmetric, then for any values a and b, there is the following

relationship:

P(a,b), iff P(b,a)

In the Geography ontology, adjacentTo is a symmetric property. Figure 15 shows

how symmetric property is defined in OWL.

Figure 15. Symmetric Property Defined

The OWL statements in Figure 15 explicitly state that the individual Nigeria

has the adjacentCountry property value of the individual Cameroon. However,

because adjacentCountry is a symmetric property, it can is inferred that Cameroon

has the adjacentCountry property value of Nigeria. In order for a property to be

symmetric, it must have the same domain and range value. It is invalid to have a

symmetrical relationship between two individuals that belong to different classes.

b. Functional Property
An OWL functional property states that there is only one value associated

with the property. If an individual designates more than one value of a functional

property attribute, then it is assumed that those values are the same. Mathematically, a

functional property is stated as follows:

 <owl:ObjectProperty rdf:ID="adjacentCountry">
 <rdfs:type rdf:resource="&owl;SymmetricProperty"/>
 <rdfs:domain rdf:resource="#Country"/>
 <rdfs:range rdf:resource="#Country"/>
 </owl:ObjectProperty>

 <Country rdf:ID="Nigeria"/>
 <locatedIn rdf:resource="#Africa"/>
 <adjacentCountry rdf:resource="#Cameroon"/>
 </Country>

 29

P(a,b) and P(a,c) implies a = c

In the Geography ontology, hasCapitalCity is a functional property. Figure 16

shows how a functional property is defined in OWL.

Figure 16. Functional Property Defined

For every individual of the Country class, there can only be one value

associated with the hasCapitalCity property. Thus, for the country individual

UnitedStates, if its hasCapitalCity property is filled with WashingtonDC

and DistrictOfColumbia, it can be assumed that these two values are the identical.

c. InverseOf Property

If a property is defined with the owl:inverseOf construct of another

property, then they have the following relationship:

P1(a,b) iff P2(b,a)

The domain and range determines the direction of the property. That is, the property

states the relationship from the domain, the subject, to the range, the object. However, it

is often necessary to define another property that states the relationship in the opposite

direction. Therefore, the “inverse of” property inverses the domain and range of the

initial property so that the domain becomes the new range and the range becomes the new

domain. Figure 17 shows how two properties have an "inverse of" relationship using the

owl:inverseOf construct.

 <owl:ObjectProperty rdf:ID="hasCapitalCity">
 <rdfs:type rdf:resource="&owl;FunctionalProperty"/>
 <rdfs:domain rdf:resource="#Country"/>
 <rdfs:range rdf:resource="#CapitalCity"/>
 </owl:ObjectProperty>

 30

Figure 17. InverseOf Property Defined

The OWL statements in Figure 17 indicated that the property

belongsToCountry is an inverse property of hasCapitalCity. Hence, if the individual

Madrid has a belongsToCountry relationship with individual Spain, then by the rules of

the "inverse of" property, Spain will automatically have a hasCapitalCity relationship

with Madrid. Also notice the domain and range of the owl:inverseOf properties. The

domain of one property is the range of another, and vise versa.

d. Inverse Functional Property
The inverse functional property combines the traits of the “inverse of” and

functional properties. It indicates that it has an inverse of relationship with another

property, which must be a functional property.

The properties hasCapitalCity and belongsToCountry, shown

in Figure 16, are in fact inverse functional properties. Since hasCapitalCity is a

functional property, its inverse must be an inverse functional property. Mathematically,

an inverse functional property is expressed as follows:

 P(a,b) and P(c,b) implies a=c

In the Geography ontology, the belongsToCountry property is defined as inverse

functional property, shown in Figure 18.

 <owl:ObjectProperty rdf:ID="hasCapitalCity">
 <rdfs:type rdf:resource="&owl;FunctionalProperty"/>
 <rdfs:domain rdf:resource="#Country"/>
 <rdfs:range rdf:resource="#CapitalCity"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="belongsToCountry">
 <owl:inverseOf rdf:resource="#hasCapitalCity "/>
 <rdfs:domain rdf:resource="#CapitalCity "/>
 <rdfs:range rdf:resource="#Country"/>
 </owl:ObjectProperty>

 31

Figure 18. Inverse Functional Property Defined

If the individual WashingtonDC has a belongsToCountry relationship

with UnitedStated, and DistrictOfColumbia also has a

belongsToCountry relationship with UnitedStated, then by the rules of inverse

functional properties, WashingtonDC and DistrictOfColumbia are identical

objects.

An inverse functional property is similar to a unique key in a database.

The domain and range of the inverse functional properties create a unique identifier

combination, where one element of the domain is always associated with a particular

domain of the range.

7. Property Restrictions
In addition to the variety of property characteristics discussed above, classes may

use property restrictions as part of their description. The restrictions are defined by the

syntax owl:Restrictions and owl:onProperty.

a. someValuesFrom and allValuesFrom Restrictions
Although the domain and range restrictions of a property apply to all

classes using that property, a class definition may further confine the property value at

the local level. The restriction syntax owl:someValuesFrom states that for every

instance of the class using that particular property, the values of the property must have at

least one individual of the class specified by the owl:someValuesFrom clause.

Figure 19 shows a class definition of IslandCountry and the use of

owl:someValuesFrom to limit the hasLandType property value.

 <owl:ObjectProperty rdf:ID="belongsToCountry">
 <rdfs:type rdf:resource="&owl;InverseFunctionalProperty"/>
 <owl:inverseOf rdf:resource="#hasCapitalCity "/>
 <rdfs:domain rdf:resource="#CapitalCity "/>
 <rdfs:range rdf:resource="#Country"/>
 </owl:ObjectProperty>

 32

Figure 19. owl:someValuesFrom Example

The owl:someValuesFrom restriction states that the individuals of

IslandCountry with the property hasLandType value must have at least one

individual belonging to the Island class. This restriction on the property only applies

to this class and its subclasses and not other that use the hasLandType property, such

as its sibling class LandlockedCountry.

The owl:allValuesFrom restriction states that if an instance of a

class has any value for this restricted property, they all must be a value from the specified

class of individuals. Unlike the owl:someValuesFrom restriction, which requires

the property to have at least one value, the owl:allValuesFrom restriction allows the

property to have a null value. The owl:allValuesFrom is often used in conjunction

with owl:someValuesFrom as a closure axiom for a property restriction. If the

developer's intention is to restrict the property value to only individuals a certain class,

rather than at least one value, then owl:allValuesFrom should be used with

owl:someValuesFrom.

 <owl:Class rdf:ID="IslandCountry">
 <rdfs:subClassOf rdf:resource="#Country"/>
 …
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasLandType"/>
 <owl:someValuesFrom rdf:resource="#Island"/>
 </owl:Restriction>
 </rdfs:subClassOf>
 …
 </owl:Class>

 33

Figure 20. owl:someValuesFrom & owl:allValuesFrom Example

Figure 20 shows a class description using both owl:someValuesFrom and

owl:allValuesFrom restrictions. This implies that all individuals of

IslandCountry with the hasLandType property value can only have values of

Island individuals.

b. Cardinality Restriction
Cardinality specifies the minimum, maximum, or the exact number of

values in a property relationship. Unless cardinality is specified, it is assumed that there

is an unlimited possible property values. Cardinality is important when the class

description is based on a specific number of property attributes. For example, when

defining a bi-coastal area, the class description must specify that it borders the ocean on

two sides of the land. Likewise minimum and maximum cardinalities put a specific

restriction on a class.

Figure 21 shows a Geography class BicoastalCountry definition.

Figure 21. Cardinality Example

 <owl:Class rdf:ID="BicoastalCountry">
 <rdfs:subClassOf rdf:resource="#CoastalCountry"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#bordersOcean"/>
 <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">2

 </owl:cardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>

 <owl:Class rdf:ID="IslandCountry">
 <rdfs:subClassOf rdf:resource="#Country"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasLandType"/>
 <owl:someValuesFrom rdf:resource="#Island"/>
 <owl:allValuesFrom rdf:resource="#Island"/>
 </owl:Restriction>
 </rdfs:subClassOf>
 …
 </owl:Class>

 34

Based on the OWL statement, the owl:cardinality constructs restrict the

class to have two bordersOcean property values. Therefore, all individuals of

BicoastalCountry using this property must specify exactly two property values.

Likewise, owl:maxCardinality and owl:minCardinality set

the upper and lower bounds of the property cardinality. Used in combination, they limit

the property to a numeric range.

c. owl:hasValue Restriction

The owl:hasValue construct restricts the class definition by specifying

the exact value of the specified property. Hence, individuals of the class must have at

least one of its property values equal to the owl:hasValue restriction.

Figure 22. owl:hasValue Example

Figure 22 is a class definition of Lake, which specifies that its hasSaline must

have a property value of NotSalty. This declares that all individuals of Lake must

have at least one hasSaline property value that equals NotSalty to satisfy this class

requirement. Similar to the allValuesFrom and someValuesFrom, this restriction

is only applied to the local class.

d. Equivalent Classes and Properties

The owl:equivalentClass indicates that two classes have exactly

the same class extensions or set of individuals. This construct has a variety of use. First,

when adopting multiple ontologies, it is used to map one class to another if they are

 <owl:Class rdf:ID="Lake">
 <rdfs:subClassOf rdf:resource="#BodyOfWater"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasSaline"/>
 <owl:hasValue>
 <SaltContent rdf:ID="NotSalty"/>
 </owl:hasValue>
 </owl:Restriction>
 </rdfs:subClassOf>
 …
 </owl:Class>

 35

identical with different class names. Second, it provides another method for defining

classes. The owl:equivalentClass allows classes to be defined by a set of

restrictions.

Figure 23. owl:equivalentClass Example

The OWL statements of Figure 23 indicate that the definition of BodyOfWater

class is exactly equivalent to all the classes that meet the restriction requirement that the

consistsOf property value is only individuals of the Water class. Although this

description may be used with the rdfs:subClassOf, as discussed above, that would

have a different implication. The restriction description under rdfs:subClassOf

states a necessary condition while owl:equivalentClass goes a step further to

create a necessary and sufficient condition. Thus, if the OWL statement in Figure 23

used rdfs:subClassOf, it would imply that individuals that has the consistOf

property value of water may or may not be the same as BodyOfWater individual;

however, the description using owl:equivalentClass declares that all things that

consists of water must be a BodyOfWater. The definitions of rdfs:subClassOf

and owl:equivalentClass are stated in Table 6.

Relationship Implication
rdfs:subClassOf BodyOfWater(a) implies consistsOf(a,b) & Water(b)

owl:equivalentClass BodyOfWater(a) implies consistsOf(a,b) & Water(b)
consistsOf(a,b) & Water(b)implies BodyOfWater(a)

Table 6. Construct for Necessary vs. Necessary & Sufficient Conditions

 <owl:Class rdf:ID="BodyOfWater">
 <owl:equivalentClass>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#consistsOf"/>
 <owl:someValuesFrom rdf:resource="#Water"/>
 <owl:allValuesFrom rdf:resource="#Water"/>
 </owl:Restriction>
 </owl:equivalentClass>
 </owl:Class>

 36

Similarly, properties may also use the construct owl:equivalenProperty to

link properties together. That is, any two properties tied with this syntax have exactly the

same value, or property extension.

e. Individual Equivalence Using owl:sameAs
Similar to the construct used for declaring that two classes are equivalent,

the construct owl:sameAs is used to declare that two individuals are equivalent.. Figure

24 shows how the owl:sameAs construct is used to indicate that the individual America

is identical to the individual UnitedStatesOfAmerica.

Figure 24. owl:sameAs Example

This syntax is also useful when linking multiple ontologies.

owl:sameAs construct allows equating individuals from different OWL documents.

The fact that individual equivalence or distinction is made explicitly implies that OWL

does not assume uniqueness based on name. The above OWL statement asserts

equivalence between two individuals. However, the same assertion may be inferred

using a functional property. Given that the hasCapitalCity is a functional property,

as defined above, the statement in Figure 25 states that the two individuals are equivalent.

Figure 25. Individual Equivalence Using Functional Property

Since hasCapitalCity is a functional property, it is simply inferred that

DistrictOfColumbia is the same as WashingtonDC.

f. Individuals Differences Using owl:differentFrom &
owl:AllDifferent

The inverse OWL construct of owl:sameAs is

owl:differentFrom. This construct is used to make individuals explicitly distinct

 <Country rdf:ID="America">
 <owl:sameAs rdf:resource="#UnitedStatesOfAmerica">
 </Country>

 <Country rdf:ID="UnitedStates">
 <hasCapitalCity rdf:resource="#DistrictOfColumbia"/>
 <hasCapitalCity rdf:resource="#WashingtonDC"/>
 </Country>

 37

from one another. This is important when using individuals as property values. Figure

26 illustrates a Geography example for the distinct individuals of Climate.

(i)

Figure 26. owl:differentFrom Example

One way to assert distinction between individuals is to use the construct

owl:differentFrom. By making these individuals explicitly distinct, it ensures that

the properties do not assume equivalence for these individuals. That is, if a functional

property tries to fill its value with two explicitly distinct individuals, an error would be

raised. In the Geography ontology, the functional property, hasClimate, cannot have

both Dry and TropicalHumid individuals as values of one instance. Since these two

individuals are explicitly unique, by the owl:differentFrom construct, they cannot

be made equivalent by a functional property.

Another method for declaring individual distinction is by using the

owl:AllDifferent and owl:distinctMembers constructs6.

Figure 27. owl:AllDifferent & owl:distinctMembers Example

6 The owl:distinctMembers can only be used in combination with owl:AllDifferent.

 <Climate rdf:ID="Dry"/>

 <Climate rdf:ID="TropicalHumid"/>
 <owl:differentFrom rdf:resource="#Dry"/>
 </Climate>

 <Climate rdf:ID="Highland"/>
 <owl:differentFrom rdf:resource="#Dry"/>
 <owl:differentFrom rdf:resource="#TropicalHumid"/>
 </Climate>

 <owl:AllDifferent>
 <owl:distinctMembers rdf:parsetype="Collection"/>
 <Climate rdf:about="#Dry"/>
 <Climate rdf:about="#TropicalHumid"/>
 <Climate rdf:about="#Highland"/>
 </owl:distinctMembers>
 </owl:AllDifferent>

 38

Figure 27 shows how to distinguish all the unique individuals in one OWL

statement, rather than with each individual declaration. The statement in Figure 27 is

semantically identical to the OWL statements in Figure 26.

8. Complex Classes
There are additional constructs used to create classes or class expressions. Class

expressions are nested class descriptions, without the need for naming each “intermediate

class” separately. Class expression allows for complex classes using set operations. This

is done using anonymous classes or value restricted classes. Specifically, there are three

types of set operations, namely union (owl:unionOf), intersection

(owl:intersectionOf), and complement (owl:complementOf). These

constructs can be thought of as the “and”, “or”, and “not” logical operators. Another

method of creating complex classes is by enumeration, where a class is described by

exhaustively listing the individuals using the owl:oneOf construct.

a. Set Operators (intersectionOf, unionOf, complentOf)
Using the set operations as a class description is closer to a “definition”

than other class description discussed thus far. That is, the membership of class is wholly

determined by the set operation specification. The set operator “intersection of”,

owl:intersectionOf, describes a class with individuals that belong to all

specifications listed under the class description. One example from the Geography

ontology using the owl:intersectionOf set operation is the IslandCountry

class.

Figure 28. owl:intersectionOf Example

 <owl:Class rdf:ID="IslandCountry">
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="Country"/>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasLandType"/>
 <owl:someValuesFrom rdf:resource="#Island"/>
 <owl:allValuesFrom rdf:resource="#Island"/>
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>

 39

In Figure 28, IslandCountry is strictly the intersection of Country class and

the set hasLandType property values of the Island individuals. Therefore, all individuals

of IslandCountry class must belong as extensions of both of these specifications. Notice

the use of the syntax rdf:parsetype=”Collection” within OWL’s intersection syntax. As

discussed in the RDF section, it is used to exhaustively list membership of a class. This

construct will be used with the other set operations as well.

 The second set operation is the “union of”, with the owl:unionOf

construct. Unlike owl:intersectionOf, the owl:unionOf operator describes a

class with individuals that belong to at least one of the specifications listed under the

class description.

Figure 29. owl:unionOf Example

In Figure 29, the rules on the union logic imply that the

SaltyBodyOfWater class includes the individuals of both the Ocean and Sea classes.

Since the union set operator is an “or” logic, the description above states that all the

individuals of SaltyBodyOfWater are made up of individuals of Ocean or Sea.

The third operator is owl:complementOf. This construct is the logic

“not,” where the class describes all the individuals that do not belong to the specified

class extension.

Figure 30. owl:complementOf Example

 <owl:Class rdf:ID="SaltyBodyOfWater">
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Ocean"/>
 <owl:Class rdf:about="#Sea"/>
 </owl:unionOf>
 </owl:Class>

 <owl:Class rdf:ID="PhysicalGeography"/>

 <owl:Class rdf:ID="PoliticalGeography">
 <owl:complementOf rdf:resource="#PhysicalGeography"/>
 </owl:Class>

 40

In the OWL statement in Figure 31, the members of the

PoliticalGeography include all individuals that are not members of the

PhysicalGeography class. Since this construct can include a very large set of

members, it is often used in combination with other operators, as in Figure 31.

Figure 31. owl:complementOf & owl:intersectionOf Example

In Figure 31, the NonSaltyBodyOfWater class is an intersection of two

classes, one named and one anonymous. The class description, using two set operators,

states that individuals of this class must be of both BodyOfWater and NOT a member of

the SaltyBodyOfWater class.

b. Enumerated Classes (oneOf)

Another method of defining a class is by direct enumeration of all of its

members or individuals. Using the owl:oneOf construct, the class is described by

exhaustively listing all the individuals that make up the class. No other individual, other

than those included in the list, can be a member of the class.

Figure 32. Enumeration Example

In Figure 32, the SaltContent class is defined by enumeration; listing all

the members, Salty and NotSalty, of the class. In order for this definition to be valid,

every individual must be declared correctly and they must all belong to a named class. It

 <owl:Class rdf:ID="NonSaltyBodyOfWater">
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#BodyOfWater"/>
 <owl:Class>
 <owl:complementOf rdf:resource="#SaltyBodyOfWater/">
 </owl:Class>
 </owl:intersectionOf>
 </owl:Class>

 <owl:Class rdf:ID="SaltContent">
 <rdfs:subClassOf rdf:resource="PhysicalDescriptor">
 <owl:oneOf rdf:parsetype="Collection"/>
 <SaltContent rdf:about="Salty"/>
 <SaltContent rdf:about="NotSalty"/>
 </owl:oneOf>
 </owl:Class>

 41

is not required for the individuals to be declared as a member of the class being defined,

although that is often the most logical.

D. CONCLUSION
This chapter covered all the RDF and OWL semantics necessary to develop a

OWL-DL ontology. Understanding these constructs is crucial to building a semantically

rich ontology for the Web or other Web-related applications. Although there are OWL

generating ontology editors available, such as Protégé, without learning how and when

the OWL semantics are used, it is not possible to build a valid ontology. This chapter

should serve as the foundation to create a useful and meaningful ontology.

Having gained an understanding of all the basic components of the RDF and

OWL, the next step is learning the process for developing an ontology. The next chapter

describes a methodology of ontology development.

 42

THIS PAGE INTENTIONALLY LEFT BLANK

 43

III. ONTOLOGY DEVELOPMENT METHODOLOGY

A. INTRODUCTION
It is generally agreed upon that ontologies are the knowledge representation

component of the Semantic Web. Although the realization of the Semantic Web is still a

distant goal, there is a growing interest for ontologies to be incorporated into current

technologies. Many disciplines are seeing the immense value of ontologies as a way to

codify a common set of information or knowledge to be shared across multiple

applications. It provides users with a consistent and agreed-upon knowledge base that

both humans and machines can process. While no ontology can model all the nuances of

any domain area, it is possible and valuable to abstract the major concepts and how they

relate to one another. A valid knowledge representation system that is widely used and

shared could save effort for those who lack access to subject matter experts (SMEs).

Likewise, SMEs are motivated to provide users and applications with basic domain

knowledge through the development of ontologies, thus providing users with consistent

sets of information that they can maintain and manage.

Following the discussion of OWL-DL constructs presented in the previous

chapter, this chapter examines a methodology for developing an OWL-DL ontology.

This process involves modeling the real world concepts and their relationships into OWL

classes, properties and instances. Although ontology development may be easily

understood, ontologies should be developed by SMEs or domain experts, particularly in

complex or technical domain areas, such as biomedicine or aircraft components. This

chapter addresses an approach of transferring domain knowledge into a valid ontology. It

is important for ontology developers to understand that building a meaningful ontology is

a highly iterative process. The greater the complexity of the domain and its scope, the

more iterations or cycles of development is required.

When an ontology is developed in OWL-DL, one can use a reasoning or an

inference application to correctly classify the concepts of the domain based on their

descriptions. As mentioned in Chapter 2, OWL-DL derives its semantics from

description language, which is a description logic formalism for representing logical

 44

meaning for reasoning computations. The capacity of inferencing is a highly valuable

component, especially as the ontology grows in size and complexity. There are

applications, such as CLASSIC and RacerPro, dedicated to processing the description

logic languages. For ontology development in this chapter and the OAKDA application

in the latter chapters, the RacerPro7 will be the reasoning and inferencing engine of

choice for OWL-DL ontologies.

Throughout this chapter, the authors use the Protégé ontology development

environment to illustrate the process of building an ontology. Although there are various

OWL-DL ontology development environments, Protégé provides a user-friendly plug-in

for RacerPro and a graphic user interface (GUI) that hides the details of the OWL syntax

from the developer. While it is crucial to understand the OWL-DL constructs in building

a valid ontology, the purpose of this chapter is to understand the process and

methodology rather than the syntax. Thus, the focus will shift away from the language

constructs to the developmental steps and key concepts unique to developing an OWL-

DL ontology.

The rest of this chapter is dedicated to understanding the purpose and method of

developing an ontology. Section B will discuss why ontologies are important and useful

as a knowledge representation system. Section C surveys previous work on

methodologies for building ontologies. Section D details a proposed seven-step

development methodology using Geography as the domain of interest. Section E

discusses other relevant considerations, such as exporting existing ontologies.

B. THE PURPOSE OF BUILDING AN ONTOLOGY
The word ontology has its origin in the philosophy discipline. Ontology is

defined in the Merriam-Webster dictionary as “(1) A branch of metaphysics concerned

with the nature and relations of being; (2) A particular theory about the nature of being or

the kinds of existents.” [http://www.m-w.com/, January 2006] This definition pertains to

a particular study of metaphysical philosophy concerning the nature of existence and its
7 RacerPro is a DL inference system. RacerPro, which stands for Renamed ABox Concept Expression

Reasoner, is a knowledge representation application using highly optimized tableau calculus for description
logic expressions. It provides reasoning for multiple ABoxes and TBoxes.

 45

experience. This concept is usually referred to as the “Big O” Ontology because it

defines a named idea in philosophy. However, there is also what is known as the “little

o” ontology, which began in the field of Knowledge Management and it is widely

adopted in Information Technology and AI disciplines. Specifically, Thomas Gruber of

the Knowledge Systems Laboratory at Stanford University first defined an ontology as

“specification of conceptualization.” More explicitly, an ontology is “a description (like

a formal specification of a program) of the concepts and relationships that can exist for an

agent or a community of agents. This definition is consistent with the usage of ontology

as set-of-concept-definitions, but more general.” [Gruber, 1993, 199] Gruber’s definition

is further expounded to state that the “little o” ontology has two parts, namely that (1) it

describes and represents an area of knowledge, and (2) it defines “the common words and

concepts of the description.” [Daconta et al., 2003, 186]

Using ontologies as a system of knowledge representation is an important

contribution made by the field of Knowledge Management. Although there are other

systems or framework for knowledge representation, ontologies provide a reusable,

sharable and platform neutral knowledge construct. According to Gruber, many other

knowledge systems are "isolated monoliths characterized by high internal coupling and a

lack of external coupling interfaces that would enable the developer to reuse software

tools and knowledge bases as modular components.” [Gruber, 1991, 1] Thus, he argues

that the only possible method of sharing and reusing these knowledge bases is to import

the knowledge representation system and its programming environment. However, using

the software engineering approach of “decomposing” these indivisible systems, these

knowledge bases should be broken into accumulable, sharable and reusable modular

building blocks. Gruber states that three decomposition techniques are often used in AI

for software development. These are using declarative knowledge representation,

separate the knowledge from the program; identifying the classes and relationships

inherent in the application-specific facts and reorganize the knowledge to allow

inheritance from these constructs; and characterizing general problem solving tasks (i.e.

classification) and inferencing classes (i.e. subsumption) and design corresponding

algorithms and methods [Gruber, 1991, 2]. However, he further argues that these

 46

strategies alone are insufficient to ensure sharability of the system. In addition to

formalizing declarative knowledge, organizing class and relationship hierarchies, and

characterizing tasks and inferences, Gruber introduces the need for canonical form of the

declarative knowledge and common ontologies. First, “canonical form of the declarative

knowledge” is a standard set of syntax and constructs or “semantics” that will be used as

the knowledge representation language. Second, common ontologies are “vocabularies

of representational terms – classes, relations, functions, object constraints – with agreed-

upon definitions, in the form of human readable text and machine-enforceable,

declarative constraints on their well-formed use.” [Gruber, 1991, 2] The canonical form

and common ontologies are two necessarily elements that allow the knowledge

representation systems to be shared and reused across multiple platforms.

Based on Gruber's broad definition, an ontology can take on various forms.

Types of an ontology may be as basic as a simple catalog, a finite list of terminology, and

as semantically sophisticated as logical abstraction for disjointed and inverse

relationships, shown in Figure 33

Figure 33. Ontology Spectrum

The Ontology Spectrum [McGuiness, 2001, 3] diagram shows the progression of

concept organization. As ontologies move from simple taxonomies to a structured

W hat is an O nto logy?

C atalog

Term s/
G lossary

Thesauri
“narrow er

term ”
re la tion

In form al
“ is -a”

Form al
“ is -a”

Form al
instance

Fram es
(P roperties)

V alue
restrictions

G eneral
log istica l

constra in ts

D is jo in t,
inverse,
part-o f

 47

knowledge base with properties and restrictions, their need for expressiveness grows.

The right side of the dotted line in Figure 33 indicates where OWL-DL constructs

become relevant. At the far right end of the spectrum, OWL-DL becomes imperative as

an ontology language. Furthermore, an inference engine uses OWL's description logic

capability to verify consistency and completion. It mathematically checks for

consistency and makes inference where it deems the relationships to be incomplete.

These are crucial elements of a meaningful ontology because applications and systems

rely on valid knowledge representation. The ontologies of concern in this thesis fall in

the farthest end of the Ontology Spectrum of Figure 33.

Given the wide range of ontologies, why are they important or even relevant as an

information system? Natalya Noy and Deborah McGuinness argue five specific reasons

for developing and using an ontology (Noy et. al., 2002, 3).

• Share a common information structure – By using an ontology that creates a
common language amongst disparate systems, it becomes possible to share the
same set of terms and concepts. This also allows agents to aggregate and extract
information from other systems and use them appropriately to answer queries.

• Reuse domain knowledge – Reuse is an important benefit of ontologies because it
allows separate components to join together seamlessly. By integrating existing
ontologies, developers can rely on a trusted source of domain expert of a
particular component. Rather than recreating something from nothing, existing
ontologies can integrate into complex knowledge bases.

• Make domain assumption explicit – By incorporating domain assumptions into the
ontology, rather than hard-coding it into a system, it makes it easier to manage
and change them. It also helps “users” understand and learn the concepts and
relationships within the domain.

• Separate domain and operational knowledge – The ontology, representing the
domain knowledge, is disconnected from the application, which represents the
operational knowledge. This kind of low coupling is valuable in managing
change in complex systems.

• Analyze domain knowledge – The accessibility of ontologies makes it possible to
analyze and validate domain knowledge. This is a key part of reusing and
extending any ontology and is a valuable asset to developers and users alike.

In spite of all these reasons, representing real-world concepts and complex

relationships in simplified two-dimensional ontologies is not only difficult, but experts

 48

find it insufficient to model all the intricate relationships of a domain. Although OWL-

DL has constructs richer in semantics than its predecessors such as RDF, it is still a

modeling language for representing the real world concepts and relationships. Since

semantic-richness must be juxtaposed with computability, there is a conflict between

“transparency and predictability” and “rigor and completeness,” when considering the

design and development of an ontology [Rector, 2004, 5]. That is, according to Rector,

the SME’s preference for representing the domain in its practical way may not align with

“logic and computational tractability.” Hence, the developer must constantly balance the

two perspectives. The tradeoff is between the domain expert’s preference for rich

representation of reality and the logics of calculation for the sake of inference and

classification.

The goal of the ontology development is not only to represent the domain

concepts and properties, but also to create a document that can be processed, including

inferences, by machines. Therefore, rather than trying to model all the components of a

particular domain, it is preferred to limit to scope to a particular area of interest or

application. Before starting the development, the SME should first ask, how will the

ontology be used? The answer to this question determines the scope of the ontology and

the purpose of building it, which affect the overall design and structure of the ontology.

C. METHODOLOGIES FOR ONTOLOGY DEVELOPMENT
 The growing number of ontologies developing in a variety of fields has lead to

many proposed methodologies. All these different methods sprung from different

domains and necessities, and they all bring important lessons for future developers. This

section will review some of the widely known and used methodology for ontology

developments.

1. Toronto Virtual Enterprise (TOVE)
 The first known methodology derives from the experiences of Toronto Virtual

Enterprise (TOVE) ontology development. The TOVE methodology steps are as follows:

1. Motivating Scenarios – These depict the set of problems facing an
organization, which are described in scenario stories or examples.

 49

2. Informal Competency Questions – Based on the scenarios from Step 1, these
are informal questions that the ontology should be able to answer.

3. Terminology Specification – All the objects and their relationships are defined
at this step in first order logic.

4. Formal Competency Questions – All the ontology terminologies are
formalized.

5. Axiom Specifications – All the axioms that specify the object definitions and
constraints are formally described. Theses axioms must satisfy and answer
the competency questions stated in Step 4.

6. Completeness Theorem – This is the evaluation stage of the development,
where the ontology is tested to meet all the required conditions.

 It is argued that the most interesting aspect of the TOVE approach is its

evaluation process using completeness theorem. The theorem are important for

“assessing the extensibility of an ontology – any extension must be able to preserve the

validity of the completeness theorems – or to provide a benchmark for ontologies” [Jones

et al, 1998].

2. METHONTOLOGY
 Similar to TOVE, METHONTOLOGY focuses on the assessment and

maintenance of the ontology. The major difference between the two is that

METHONTOLOGY focuses mainly on the maintenance within the life cycle whereas

TOVE uses formal techniques for addressing limited areas of maintenance [Jones et al.,

1998]. The seven steps of METHONTOLOGY are as follows:

1. Specification – This step states the purpose of the ontology as well as the
users, application, scope, and the required level of formality. The output of
this step is a “natural-language ontology specification document” [Gomez-
Perez et al., 1995].

2. Knowledge Acquisition – In parallel with Step 1, the developer finds the
source of the ontology domain knowledge in the form of interview with SMEs
and analyses of literature.

3. Conceptualization – The terms of the domain are specified as concepts,
instances, verb relations or properties.

4. Integration – For the sake of uniformity between different ontologies,
specifications from other ontologies are consulted and incorporated.

5. Implementation – The ontology is developed into a formal language, such as
OWL.

6. Evaluation – Significant attention is paid to this step of the methodology,
using different techniques to determine the validity and verification of the
ontology. A set of guidelines are used to search for incompleteness,
inconsistencies, and redundancies.

7. Documentation – All the steps and the ontology life cycles are documented.

 50

 When the ontology is in the prototype phase, the emphasis is on the specification,

conceptualization, formalization, integration and implementation steps of the lifecycle.

However, after the ontology matures into the maintenance phase, the developer must shift

the focus to knowledge acquisition, evaluation and documentation of the ontology [Jones

et al, 1998].

3. KBSI IDEF5

 The IDEF5 methodology proposes a set of “guidelines” rather than systematic

rules for developing an ontology. It suggests that ontology engineering is an open-ended

process that should be constantly refined and updated. The IDEF5 guidelines are as

follows:

1. Organizing and Scoping – In the form of a purpose statement, this step
establishes the objectives and context of the ontology that will be used as a
“completion criteria.”

2. Data Collection – The necessary data is collected using the knowledge
acquisition techniques, such as expert interviews and protocol analysis.

3. Data Analysis – This step analyzes the data collected in Step 2. All the
domain’s objects of interests are identified and the boundaries of the ontology
are defined.

4. Initial Ontology Development – A draft of the ontology is developed using
“proto-concepts,” which are preliminary specifications of objects, properties
and relationships.

5. Ontology Refinement and Validation – The “proto-concepts” from Step 4 are
tested and refined through multiple iterations using deductive validation
methods.

 Two representation languages assist in the continual refinement process of the

IDEF methodology. The first is the schematic languages, which are graphical notations

used mostly to facilitate the communication between the ontology developer and the

domain expert. The second is the elaboration language, which is a more structured

representation of the ontology objects and relationships [Jones et al., 1998].

 The three ontology development methods presented above are equally valid and

bring important lessons to ontology developers. However, this thesis proposes a new

ontology development methodology that is unique to developing an OWL ontology. The

goal is to incorporate the different methods proposed above as well as provide a useful

step-by-step guidance using OWL as the knowledge representation language of the

 51

ontology. Similar to three methodologies reviewed above, the following methodology is

derived from the lessons learned by the authors while developing the Geography

ontology.

D. THE STEPS TO DEVELOPING AN ONTOLOGY
Three basic approaches are used for developing ontologies: top-down, bottom-up,

or a combination approach. Although no one method is best, the combination approach,

that starts with identifying the most obvious concepts and then incorporating the less

salient concepts later, is better aligned with the iterative process recommended in

building an ontology, as well as other complicated systems or applications. The ultimate

goal is to follow a process leading to a good design and proper structure of the ontology.

Regardless of how well planned, ontology development should be a cyclical and iterative

process. It is recommended that the developer consider the structure of the ontology in

multiple iterations, similar to the life cycle approach of software development. An

example of the life cycle approach for software development is the Boehm’s spiral

model, shown in Figure 34 (Boehm, 1998, 61). The model includes all the required

phases of requirements, analysis, design, coding, testing and operations.

 52

Figure 34. Boehm's Development Spiral

The steps outlined below fit into this lifecycle phases. While this chapter outlines the

first iteration of the process, developers should expect to follow multiple repetitions of

the methodology.

 We propose an ontology development methodology that consists of seven steps.

Similar to the spiral model, these steps are applied iteratively and the developers may

find themselves going back to earlier steps to edit their initial work. The seven steps are

as follows:

1. Determine the scope and application of the ontology
2. List relevant concepts of the domain
3. Create the class hierarchy
4. Define properties
5. Describe classes using property restrictions and complex definitions
6. Classify ontology with a reasoning tool
7. Create individuals and fill property values

Each of these steps will be discussed in detail in the sections that follow. These steps will

be used to build the example Geography ontology presented in the previous chapter. The

 53

choice of the Geography domain is based on the fact it is a commonly understood domain

and thus will help the reader understand the process of building an ontology..

1. Determine the Scope and Application of the Ontology
This first step is the most important steps of the overall process and determines

the final outcome of the ontology. The domain expert must understand well the purpose

of the ontology. Often, the purpose of an ontology is two-folds. If an ontology is to

represent the knowledge base of a particular domain or segment of a domain, it will

potentially function to “answer” all general questions relating to that domain. A second

reason for developing an ontology is their use as knowledge representations in specific

applications. For a given ontology, the requirements for these two goals, to serve as a

knowledge database for a specific application and as a generic knowledge representation

model of a particular domain, may be conflicting. Therefore, the developer must

compromise the demand for specificity and generality of scope in order to create a useful

ontology. The developer should carefully manage the scope and depth to develop a

realistic and coherent ontology that serves the purpose of the application.

To help developers determine the scope of a given ontology, a series of

competency questions was developed by Gruninger et al. (Gruninger and Fox, 1995).

These are questions that the ontology is expected to answer for the application on hand

and, therefore, these questions can help determine the scope of the ontology. The list

should include broad and specific questions, acting as the litmus tests to ascertain the

necessary level of detail.

The scope and purpose of the Geography ontology is to define the basic physical

and political geographies and represent the relationships between them for the purpose of

using it with OAKDA application, which will mine it to provide meaningful context to

tailor user web searches. It should represent the high-level understanding of geopolitics –

the physical geographic characteristics existing within different types of political entities.

We will use this example ontology in the sections that follow to demonstrate the

development methodology of an OWL-DL ontology.

 54

Example competency questions that are used to help determine the scope of the

Geography ontology include the following:

• Which non-democratic countries are landlocked?
• What bodies of water border all bi-coastal countries in the northern

hemisphere?
• What is the most common climate of island countries?
• What river runs through the most countries?
• Which continent has the greatest number of coastal countries?

These competency questions should be used to guide the development process

and are applied repeatedly during the phases of the methodology as well as between

iterations to ensure that the ontology fulfills its purpose.

2. List Relevant Concepts of the Domain
Once the scope is broadly defined, this step enumerates, in no particular order, the

main concepts of the domain of interest. Although the final ontology may not necessarily

include all the concepts defined during this phase, the developer should list as many

relevant concepts as possible. At this point, one should not be concerned with

overlapping concepts, the relationships between them, or their properties. The goal of

this step is to create a comprehensive list of the concepts of the domain in preparation for

the subsequent steps of development.

Although as indicated, the properties and relationships of concepts should not be

considered in this step, bearing in mind the main properties of concepts and how one

concept relates to another could generate useful ideas of other related concepts. Another

useful technique is to group related concepts into relevant categories. However, these

categories should not be too narrow, which introduces difficulties further along in the

process. It is important to note that this is still an informal stage of the development,

where the SME should be more concerned about generating ideas rather than hard-coding

specific concepts into categories.

For the Geography example, the relevant concepts of the domain include the

following:

 55

ocean, sea, lake, river, mountain, land, plains, valley, desert,
tropics, climate, country, government, city, boundary,
continent, language, ethnicity, latitude, longitude,
archipelago, coastline, Mexico, South America

There is no particular order to specifying the list and the concepts were generated

from the competency questions. This step provides the input for the next step, which is

building the class hierarchy. While not every concept from this stage becomes a class,

having a large pool of concepts relevant to the domain makes the hierarchy development

easier. As in the requirements analysis for software development, the time and thought

invested into the first two steps of the methodology provide great benefits and rewards

during the subsequent steps of the methodology.

3. Create the Class Hierarchy
This step creates a class hierarchy by relating classes through the subsumption

construct “is-a” relationship. An “is-a” relationship indicates that a member of a subclass

is also a member of the superclass as shown in Figure35.

Figure 35. Simple Class Hierarchy

In the simple class hierarchy of Figure 35, classes ClassA, ClassF and

ClassI are direct subclasses of owl:Thing8, which is the highest OWL-defined class

of the hierarchy. Classes within the same level of the hierarchy are considered sibling

8 As mentioned in the previous chapter, all classes in OWL-DL are subsumed under the parent

class of owl:Thing. This implies that all classes are consider subclasses of owl:Thing. This is an
important concept to remember as the ontology incorporates properties and domain and range restrictions.

 56

classes. Classes subsumed under other classes are subclasses. All subclasses have a “is-

a” relationship with their parent or superclass. Thus, members of ClassB are also

members of ClassA according to the definition of the is-a relationship between

ClassA and ClassB. Similarly, members of ClassD and ClassE are also members

of ClassB, which in turn are members of ClassA. It is important to have a firm

understanding of this parent-child class relationship to avoid problems with the later steps

of the methodology.

Organizing the class hierarchy may be accomplished in several ways: top-down,

bottom-up, or a combination approach [Noy and McGuiness, 2002, 6]. The top-down

approach starts with the most general set of concepts and works down to the subsequent

levels of specialization. For example, the BodyOfLand and BodyOfWater classes are

identified as the highest level of the Geography ontology hierarchy, and subsequent

subclasses are subsumed under these two classes. Thus, Ocean, River, and Lake are

added as subclasses of BodyOfWater, and Mountain, Desert, and Plains as

subclasses of BodyOfLand. The bottom-up approach starts with identifying the most

specific classes, then grouping them under a parent class. In the Geography ontology

example, the developer may start with LandlockedCountry, IslandCountry, and

BiCoastalCountry classes, which are then grouped as subclasses under the parent

class of Country. Similarly, lower level classes such as DryClimate,

PolarClimate, and TropicalHumidClimate are subsumed under the Climate

parent class.

When grouping low-level concepts, developers should carefully differentiate

between classes and their instances, known in OWL as individuals. A careful

examination of the list of concepts generated in step two of the methodology should help

the developer differentiate classes from their instances. The distinction between a class

and an individual is not always clear and often depends on the purpose of the ontology.

This means that a concept that is a class in one ontology may be more appropriately

represented as an individual in another. However, classes are generally “naturally

occurring sets of things in a domain of discourse” and individuals correspond to real-

 57

world entities grouped under these classes [Smith et al., 2004, 19]. Classes represent a

group of similar entities while individuals are the actual occurrences of these entities that

make up the group.

In the Geography ontology, PacificOcean is an instance of Ocean rather

than its subclass since PacificOcean does not represent a group of entities but an

actual entity itself. On the contrary, IslandCountry should be a subclass of

Country rather than its instance since it represents a group of countries with the

geographic landscape of an island, such as Ireland and Cuba. It is important to

emphasize that the distinction between a class and an individual often depends on the

purpose and scope of the ontology.

The most common approach to organizing the ontology class hierarchy is the

combination approach. This approach develops the class hierarchy by defining the most

salient terms of the ontology, adding successive classes at the different levels of the

hierarchy as appropriate. The advantage of the combination approach is that it allows the

developer to start anywhere along the hierarchy and move up and down the stratum to

add new classes as necessary.

In the Geography ontology, two most salient classes are Country and Ocean.

Using the combination approach, these two classes are defined at a top level of the

hierarchy. Then, new concepts are added as parent classes or subclasses to these two

initial set of classes. Furthermore, in line with the iterative development process, the

hierarchy structure becomes refined as classes are moved from one position within the

hierarchy to another. For example, as Figure 36 shows, in the first two iterations

BodyOfWater and BodyOfLand classes occupied the top level of the hierarchy, as

sibling to PoliticalGeography and Climate, however in the third iteration of the

class hierarchy, the two classes fall under the parent class of PhysicalGeography.

 58

Figure 36. Progression of the Class Hierarchy

The development of the class hierarchy as described in this step falls under the

“design” phase of the spiral development cycle. As the ontology evolves, the developer

will revisit this step and modify the hierarchy as necessary. Additional requirements and

knowledge acquired in the process refines the class taxonomy. In order to manage the

constantly evolving ontology, detailed documentation and versioning is recommended.

a. Disjointed Classes
It is common for developers to make false assumptions about the

relationship between OWL-DL classes. Specifically, developers presume that classes

that do not share a superclass-subclass, or is-a, relationship are automatically disjoint. In

OWL-DL, all classes are considered overlapping unless such separation or disjointness is

made explicit. Specifying disjointness between classes requires an explicit specification

using the OWL syntax owl:disjointWith. Only by defining a class as disjoint with

others, the developer can assume class mutual exclusivity.

 59

In the Geography ontology, disjointness between classes Ocean,

Mountain, and Country is not assumed. In other words, according to the current

specification, Ocean and Mountain classes can share the same individuals. In order to

make classes disjoint from one another, disjointness must be specified explicitly using the

owl:disjointWith statement.

Figure 37. Disjointed Classes

Figure 37 indicates in Protégé that the selected Bay class is disjointed

from all of its sibling classes, as listed in the bottom right corner box. Without this

explicit restriction, OWL does not exclude an individual from belonging to more than one

class. Also, the disjoint restriction applies to all the subclasses under the specified class.

By making BodyOfWater disjoint with BodyOfLand, all the subclasses of

BodyOfWater are disjoint from all the subclasses of BodyOfLand.

4. Define the Properties
After defining the class hierarchy, the next step is to specify the class properties.

Classes, without any properties or restrictions, have no useful meaning other than how

Disjoint Classes

 60

they relate to each other in the taxonomy. A property, which is defined at the class level,

represents the relationship between two individuals, or between an individual and a literal

string value. As discussed in the previous chapter, depending on whether it is an object

property or datatype property, the range value of the property is either an OWL

individual object or a literal string. Properties describe the relationships or links between

real-world objects or values. Properties are the verb that link the subject and object in the

RDF triples as explained in Chapter Two. Although there are properties that are unique

to a given class, it is more common and recommended that properties be defined

generically and be applied to classes as appropriate. That is, a property often applies to

more than one class. However, property restrictions can be used to limit the applicability,

using the domain and range specification. This will be discussed in more detail in Section

5.C that defines the use of domain and ranges.

Although properties may be used generically throughout an ontology, the

developer should start defining them based on the characteristics of the classes. One way

of thinking about these characteristics is the verb-object that applies to the class. For

instance, for the class Parent, the most obvious property is “has child.” Likewise, the

most salient property of the Child class is “has Parent.” Similar to the technique used

to define classes, developers should start with the most obvious characteristics of a class

and iteratively add, change, and refine these characteristics.

In the Geography example, the characteristics of the Country class include “has

border”, “has population”, “has capital”, “has language”, “has climate”, “has river”, “has

lake”, “has mountain”, “ has government”, “has ethnic group”, and others. As the list

shows, most these characteristics relate to other classe instances within the ontology. The

Country class has a hasCapital property to denote the relationship it has with a

capital city. Although the verbs can be arbitrary and are often specified at the discretion

of the developer, it is advisable to use the most straightforward and direct description of

the relationship. For the class characteristics that relate it to a data type, the property

depicts the class’s relationship to a data string value. The property hasPopulation

describes the link between the individuals of class Country and their population value.

In this case, population is a numeric value that represents the number of people in a

 61

particular country. Figure 38 shows the graphical representation of the difference

between object oroperty and datatype property.

Figure 38. Two Types of Properties

The object property hasCapital denotes the relationship between the individuals of

Country and the individuals of CapitalCity, which are both OWL objects. The

datatype property hasPopulation, however, links the individuals of Country to a

unique data string value, which in this case is “20,064,776.”

 A partial list of properties for the Geography ontology is shown in Figure 39.

Figure 39. Geography Properties

OWL-DL ontologies allow the specification of different types of object

properties. They include inverse, transitive, symmetric, functional and inverse functional

properties. Each of these properties consists of its unique OWL-DL constructs, which is

RomeItaly

hasCapital

Object Property
“20,064,776” Sri Lanka

hasPopulation

Datatype Property

 62

discussed in detail in the sections below. It is important for the developer to correctly

identify the type of property and specify it in the ontology.

a. Inverse Properties
Properties having an opposite relationship to one another are known as

inverse properties. An inverse property is denoted using the OWL syntax,

owl:inverseOf, a subproperty of owl:ObjectProperty, to indicate a diametric

relationship to the specified inverse property. Generally, a property denotes a one-

direction relationship from subject to object, such as IndividualA “isParentOf”

IndividualB. Logically, isParentOf property, by itself, reveals no information

about whether there is a corresponding relationship in the other direction. Developer can

create another property, called isChildOf, to assert an opposite relationship from

IndividualB to IndividualA, by designating the property as the inverse property

of isParentOf.

Consider the Geography example in Figure 40.

Figure 40. Inverse Property

The selected hasCountry property is an inverse property of hasCity,

which is shown under the “Inverse” specification slot. If an individual has a

Inverse Property Inverse Property

 63

hasCountry property value filled by another individual, then by the rule of inverse

property those two individuals also have an opposite relationship via hasCity property.

That is, if the individual Venice, an instance of the City class, has the hasCountry

property value of Italy, an instance of Country, Italy will automatically have the

hasCity property value of Venice as shown in Figure 41.

Figure 41. Individual Attributes of Inverse Properties

When using the inverse property, the domain and range axioms should be

carefully considered. Although the inverse property example shown in Figure 8 has the

domain and range defined, it is equally valid to leave them undeclared, which defaults to

the highest class owl:Thing. In fact, if domain and ranges specification are not

compatible between inverse properties, it may cause an error in the ontology and lead to

unintended consequences.

b. Transitive & Symmetric Properties
Similar to the inverse property, transitive and symmetric properties are

subclasses of owl:ObjectProperty and they assert information about the

relationship of the individuals related by these properties. A transitive property is

commonly used to represent “part-whole” relationships. That is, if transitive property PT

links individuals X and Y as well as individuals Y and Z, then it is inferred, by the rules of

Inverse Properties

 64

transitivity, that PT relates X to Z. Figure 42 shows how Protégé defines transitive and

symmetric properties.

Figure 42. Transitive & Symmetric Properties

In the Geography ontology, the locatedIn is a transitive property and it

is applied the individuals VaticanCity, Rome, and Italy. That is, if

VaticanCity is “locatedIn” Rome and Rome is “locatedIn Italy”, then by

the rule of transitivity, VaticanCity is “locatedIn” Italy. While this

implication is not explicitly stated in OWL or visible in Protégé, the inferred relationship

is made transparent when the ontology is used to make reasoning decisions. Inference

engines, such as RacerPro, read the OWL syntax and make the implied link as defined by

the transitive property.

A symmetric property, on the other hand, allows the individuals to have a

reciprocal or a bi-directional relationship. Unlike the inverse properties, a symmetric

property is one relationship that is applied in both directions as shown in Figure 43.

Transitive Property

Symmetric Property

 65

Figure 43. Difference between Inverse and Symmetric Properties

Figure 43 shows the difference between inverse and symmetric properties.

The isParentOf property and isChildOf properties denote opposite relationships,

making them inverse properties. However, the symmetric property isSiblingOf

allows the relationship to be bi-directional, allowing the subject to be the object and vise

versa.

In the Geography ontology, an example of symmetric properties is

adjacentTo. When individual A is adjacentTo individual B, then by rule of

symmetry, individual B is adjacentTo individual A. Specifically, if individual

Mexico is adjacentTo UnitedStates, then it is inferred that UnitedStates is

adjacentTo Mexico.

c. Functional & Inverse Functional Properties
A functional property indicates that, for a given individual, there can be at

most one property value associated with that individual. For a functional property PF,

individual X is associated with at most one property value of individual Y. However, if

PF links X with another value, say individual Z, then by the rule of functional property,

individual Y must equal individual Z. In other words, they are the same object or value

with two separate instantiations.

Consider the example of Figure 44 from the Geography ontology. In this

example, the property hasCapital is a functional property.

isChildOf

isParentOf
John Jenny

Inverse Properties

IsSiblingOf
Jenny Jack

Symmetric Property

 66

Figure 44. Attributes of a Functional Property

The individual UnitedStates is associated with two different

hasCapital values, namely DistrictOfColumbia and WashingtonDC.

However, since functional property must only have one value associated with a given

individual, it must be inferred that these are equal objects.

Similar to inverse property, inverse functional property denotes an

opposite relationship to its “inverse-of” property, which is a functional property. Since

functional property is restricted to one property value, the same is applied to the inverse

functional property. For an inverse functional property PIF, if individuals X relates to

individual Z and individual Y also relates to Z, then it is assumed that individual X equals

to individual Y. An example of the inverse functional property from the Geography

ontology is belongsToCountry property as shown in Figure 45.

Figure 45. Attributes of an Inverse Functional Property

Figure 45 shows the values DistrictOfColumbia and WashingtonDC are both

associated to UnitedStates by belongsToCountry property. By the rules of

inverse functionality, it is inferred that these are equal and they are two instantiation of

the same value.

hasCapital
Washington
D.C.

District of
Columbia

United
States

hasCapital Since hasCapital is
a functional property,
these two individuals
must be the same.

belongsToCountry

Washington
D.C.

District of
Columbia

United
States

belongsToCountry

The inverse functional
belongsToCountry
property implies that
these two are the same.

 67

 Figure 46 shows how the functional and inverse functional properties are

designated in Protégé.

Figure 46. Functional and Inverse Functional Properties

Figure 46 shows that the definition of hasCapital, which is a

functional property, specifies that it has an inverse functional property relationship to

isCapitalOf. Once two properties are linked by the inverse-of construct, the

specification only needs to be stated once; in this case the isCapitalOf property

definition will automatically show that it has an inverse functional relationship with

hasCapital.

5. Describe Classes Using Property Restrictions and Complex
Definitions

Once properties are defined, they are used to restrict and describe classes. In

order to associate a property with a class definition, it must be used as part of the class

restriction. There are three types of class descriptions in OWL-DL, namely enumeration,

property restriction, and complex class definition. First, enumeration describes a class by

exhaustively listing all of its members or instances in its definition using the OWL

construct owl:oneOf. No other members, other than those listed under the definition

can belong to the class. Second, there are two types of property restrictions, quantifier

Functional Property

Inverse Functional
Property

 68

(or value) and cardinality. The quantifier restrictions constrain the range value of the

property when applied to the class definition. The cardinality restrictions constrain the

number of property values the class instance is allowed. And third, complex class

descriptions are defined using logical operators of intersection (AND), union (OR) and

complement (NOT) of classes. They represent advanced class logic of OWL-DL. Along

with describing the restrictions in detail, there are two OWL-DL concepts, the difference

between universal and existential restrictions and understanding “open world” vs. “closed

world” assumption, that frame the types of restrictions used for class descriptions. These

will be discussed in detail below.

a. Universal and Existential Restrictions
One of the most common errors when using property restrictions to

describe classes is the differentiating between universal and existential restrictions.

Without understanding the meaning and implications of these two restrictions, it is likely

that many developers will use the wrong restriction. To constrain the range value of a

property, an existential restriction (someValuesFrom) should be used rather than a

universal restriction (allValuesFrom). The existential restriction, denoted with the

symbol "∃", states that the individuals of the class being defined must have at lease one

property relationship with the specified range of individuals. In other words, if a property

restriction for ClassX is "∃ PropertyE ClassY", then every individual of ClassX

have at least one PropertyE relationship with an individual of ClassY. By this

definition, however, it is possible to for individuals of ClassX to have PropertyE

relationship with individuals of other classes as long as it satisfies the “at least one”

requirement. It does not restrict the individuals to have PropertyE relationship with

only the individuals of ClassY. On the other hand, universal restriction, denoted with

the symbol "∀", states that individuals of the class being defined must have all of their

property relationships with the specified range of individuals. For ClassX with a

property restriction of "∀ PropertyU ClassY", if individuals of ClassX have any

PropertyU relationship, it must be with individuals of ClassY. However, it is

possible for individuals of ClassX to not have any PropertyU values. Unlike the

 69

existential restriction, universal restriction does not require the individuals to have any

property relationship with a defined set of objects.

In description logic, existential restrictions are used to limit the property

range, requiring every individual of that class to have at least one property value from the

specified range. In defining the Country class, the property containsFeatures

uses the existential restriction someValuesFrom as shown in Figure 479.

Figure 47. Existential Restriction in OWL

The existential restriction, "∃ containsFeature BodyOfLand",

requires that at lease one of the Country individual have a containsFeature

property value from the individuals of BodyOfLand. As long as that requirement is

satisfied, individuals of the Country class may have containsFeature property

value from individuals from other classes, as shown in Figure 48.

Figure 48. Existential Restriction Example

If the Country class was defined by a universal restriction, the

allValuesFrom semantic is used to constrain the class description (Figure 49).

9 The “translation” is the English paraphrasing of the OWL-DL semantics stated in the examples.

OWL:
Class (Country) Subclass of PoliticalGeography
Restriction (containsFeatures someValuesFrom BodyOfLand)

Translation:
Country class contains, amongst other things, some form of BodyOfLand

containsFeatures

containsFeatures

containsFeatures

containsFeatures

containsFeatures

Individuals of
Country

Individuals of
BodyOfLand

 70

Figure 49. Universal Restriction in OWL

The universal restriction, "∀ containsFeature BodyOfLand", requires

that if an individual of Country has a containsFeature property value, it must be

an individual of BodyOfLand. However, this restriction does not require all of

Country individuals to have a containsFeature property value. Unlike the

existential restriction, individuals may not be associated with any containsFeature

relationships. This is shown in figure 50.

Figure 50. Universal Restriction Example

Developers should be clear about the appropriate type of property

restrictions that should be applied to the class definitions. If the wrong restriction is

applied to the class, there will be unforeseen consequences when the ontology is

inferenced and affect the overall validity of the ontology.

b. Open World vs. Closed World
Most ontology developers, unfamiliar with open world reasoning of OWL,

fail to make negation explicit. Databases, logic programming and frame languages are

“closed world reasoning" systems which assume that when something is not found, it is

false. However, description logic based languages, such as OWL-DL, associate negation

OWL:
Class (Country) Subclass of PoliticalGeography
Restriction (containsFeatures allValuesFrom BodyOfLand)

Translation:
Country class contains, amongst other things, some form of BodyOfLand

containsFeature

containsFeatures

containsFeature

Individuals of
Country

Individuals of
BodyOfLand

 71

with “unsatisfiability.” That is, falsification can only be proven if contradicting

information is made explicit.

Consider the IslandCountry and LandlockedCountry class

definitions in Figure 51.

Figure 51. Definitions of IslandCountry and LandlockedCountry

Intuitively, developers will define the classes IslandCountry and

LandlockedCountry as stated in Figure 51. When a developer uses the existential

restriction statement someValuesFrom, to restrict the property value, it leaves the

definition open to other assumptions, as expressed by the translation “amongst other

things." That is, these definitions are open to interpretation that the individuals can have

property values other than what was specified with the someValuesFrom restrictions.

Although these definitions are not technically invalid and do not cause problems by

themselves, complications occur when you introduce other classes, such as

ArchipelagoCountry, to the ontology. Consider the definitions in Figure 52.

OWL:
Class (IslandCountry) Subclass of Country
Restriction (hasLandType someValuesFrom Island)
Restriction (hasBorder someValuesFrom Ocean)

Translation:
IslandCountry is any country that has, amongst other things, some land type of Island and some
border of Ocean.

OWL:
Class (IslandCountry) Subclass of Country
Restriction (hasLandType someValuesFrom Island)
Restriction (hasBorder someValuesFrom Ocean)

Translation:
IslandCountry is any country that has, amongst other things, some land type of Island and some
border of Ocean.

OWL:
Class (LandlockedCountry) Subclass of Country
Restriction (hasBorder someValuesFrom Country)
complementOf (restriction (hasBorder someValueFrom Ocean))

Translation:
LandlockedCountry is any country that has, amongst other things, some border of Country and does
not have some border of Ocean.

OWL:
Class (IslandCountry) Subclass of Country
Restriction (hasLandType someValuesFrom Island)
Restriction (hasBorder someValuesFrom Ocean)

Translation:
IslandCountry is any country that has, amongst other things, some land type of Island and some
border of Ocean.

OWL:
Class (LandlockedCountry) Subclass of Country
Restriction (hasBorder someValuesFrom Country)
complementOf (restriction (hasBorder someValueFrom Ocean))

Translation:
LandlockedCountry is any country that has, amongst other things, some border of Country and does
not have some border of Ocean.

 72

Figure 52. Definitions of Archipelago and ArchipelagoCountry

Based on the specifications of Archipelago and

ArchipelagoCountry, it may seem appropriate that ArchipelagoCountry class

be subsumed under IslandCountry class, since Archipelago is a subclass of

Island. However, given the open definition of IslandCountry, as shown in Figure

19, ArchipelagoCountry will not be inferred or classified as an

IslandCountry. The current definition of ArchipelagoCountry, described by

the existential property restriction of someValueFrom, does not preclude the class

from having a land type of something other than an Archipelago. Thus,

ArchipelagoCountry can take on any form of land type and be classified as a

LandlockedCountry as likely as any other type of country in the ontology.

Based on the definition shown in Figure 20, open world reasoning makes

no assumptions about the land type of the ArchipelagoCountry class simply based

on the fact that other land type information was absent from the definition. In order for

this class to be classified as a subclass of IslandCountry, as is the intention of the

developers, it must explicitly exclude of all other land types in the class definition. This

is accomplished by including a further restriction known as a closure axiom. According

to Horridge et al., "[a] close axiom on a property consists of a universal restriction that

OWL:
Class (ArchipelagoCountry) Subclass of Country
Restriction (hasLandType someValuesFrom Archipelago)

Translation:
ArchipelagoCountry is any country that has, amongst other things, some land type of
Archipelago.

OWL:
Class (Archipelago) Subclass of Island
Restriction (cardinality >2 Island)

Translation:
Archipelago is any island that consists of, amongst other things, at least two islands.

 73

acts along the property to say it can only be filled by the specified fillers [Horridge et. al.,

2004, 70]. The restricton has a filled that is a union of the fillers that occur in the

existential restriction for the property." That is, closure axiom adds the universal

restriction allValuesFrom to the existing existential restriction to exclude other

possible assumptions in the class definition. Hence, it closes the class definitions to other

interpretations, as shown in Figure 53.

Figure 53. New Definition of ArchipelagoCountry

By applying the closure axiom, the definition of

ArchipelagoCountry is no longer open or ambiguous. As written under the

translation, the allValuesFrom specification adds the restriction “only” to the

definition, disallowing the hasLandType property from including any individuals other

than those belonging to the Archipelago class. The closure axiom should be applied

to all classes where such quantifier property restrictions apply; otherwise, inferencing

tools cannot properly classify the classes. Hence, classes IslandCountry and

LandlockedCountry should also include closure axioms as shown in Figure 54.

OWL:
Class (ArchipelagoCountry) Subclass of Country
Restriction (hasLandType someValuesFrom Archipelago)
Restriction (hasLandType allValuesFrom Archipelago)

Translation:
ArchipelagoCountry is any country that has, amongst other things, some land type of Archipelago and
only land type of Archipelago.

 74

Figure 54. New Definitions of IslandCountry and LandlockedCountry

c. Domain and Range
Each property has an associated domain and range as part of the property

definition. When the property is initially created, its domain and range defaults to OWL's

highest level class, the owl:Thing class. However, the developer may change the

domain and range to other values. As mentioned in the previous chapter, the domain of a

property associates the property with the class(es) it modifies and asserts that the subjects

of such property statements must belong to the instance of the class. The range is the

specified set of values, either class(es) or data string, that the property is allowed to take

as its value. For an object property, the property links the individuals of the domain class

to the individuals of the range class. Unlike the quantifier restrictions, domain and range

are global axioms that are applied wherever the property is used, rather than only at the

class description level.

If the Geography ontology's hasCapital has a domain of Country

and range of CapitalCity, then this property is intended to connect the individuals of

OWL:
Class (IslandCountry) Subclass of Country
Restriction (hasLandType someValuesFrom Island)
Restriction (hasLandType allValuesFrom Island)
Restriction (hasBorder someValuesFrom Ocean)
Restriction (hasBorder allValuesFrom Ocean)

Translation:
IslandCountry is any country that has, amongst other things, some land type of Island and some
border of Ocean and only land type of Island and only border of Ocean.

OWL:
Class (LandlockedCountry) Subclass of Country
Restriction (hasBorder someValuesFrom Country)
Restriction (hasBorder allValuesFrom Country)
complementOf (restriction (hasBorder someValueFrom Ocean))
complementOf (restriction (hasBorder allValuesFrom Ocean))

Translation:
LandlockedCountry is any country that has, amongst other things, some border of Country and
does not have some border of Ocean and only has border of Country and never has border of Ocean.

 75

Country to the individuals of CapitalCity whenever the hasCapital property is

used as a restriction.

When specifying an object property, it is important to define the range

type of “instance,” rather than “class,” which is the other possible option in OWL (Figure

55). Developers commonly mistake the range values of a property to be the class objects

themselves, rather than the individual(s) that belong to that class. By choosing “class” as

the range type, OWL will treat the class as an individual creating a type of “meta-

statement” allowed only in the OWL-Full sublanguage.

Figure 55. Selecting the Property Range Type

Range of an object property may consist of individuals from more than

one class. If propertyP has a range of individuals from ClassA and ClassB, then the

possible values of propertyP include all the individuals, or the union, of Class A and

Class B. In the Geography ontology, the property hasJurisdiction is a property

that links the individuals of the Government class to the individuals of both City and

Country classes, via the property. When multiple classes are designated as the range,

the OWL represents the range values as the union of classes, in this case the individuals

that are either individuals of City or individuals of Country.

Select the “type” of
range value

 76

In OWL, domain and range constraints are axioms10 used for reasoning,

rather than binding restrictions of the property. Therefore, misusing the constraints can

cause significant errors and create unintended consequences when the ontology is

classified or inferenced. Consider the example the hasBoundary property. The

property’s domain is BodyOfLand and range is the union of Latitude and

Longitude classes. However, no error is raised when this property is used to describe

the relationship between individuals of the class Country and the individuals of

Ocean, even though Ocean is not part of the specified range. If Brazil, an individual

of Country, applies the hasBoundary property to associate with AtlanticOcean,

an individual of Ocean, the OWL statement will reads “Brazil hasBoundary

AtlanticOcean.” Although this relationship does not cause an error by itself, the

problem occurs when the ontology is classified. Since hasBoundary property has

defined domain and range axioms, BodyOfLand and union of Latitude and

Longitude respectively, and since that does not align with the property applied to

individuals of Country and Ocean, the classifier will make inferences based on the

domain and range specification. In this scenario, the classifier will infer that Country

is a subclass of BodyOfLand and Ocean is a subclass of Latitude and

Longitude. Furthermore, if Ocean is defined as disjoint from Latitude or

Longitude in its class definition, then OWL will raise an error because disjointed

classes cannot have a superclass-subclass relationship. This unintended result of class

subsumption is an error that can be avoided if the developers fully understand the

consequences of designating the property domain and range. For most developers, it is

recommended that they do not specify the domain and range, reducing the chances of

serious errors in the ontology.

d. Primitive and Defined Classes
Unlike other languages, OWL differentiates between “primitive” and

“defined” classes. Primitive classes, also referred to as “partial classes,” are those

defined only by necessary conditions or restrictions. Defined, or “complete” classes,

10 Axioms are general statements or assumptions accepted as true without demonstrated proof.

 77

have at least one necessary and sufficient condition. The difference between a primitive

and defined class is the level of completeness associated with the class definition.

Reasoning tools can base their classification inferences only on defined or complete

classes; no definitive conclusions can be made on primitive classes.

In the Geography ontology, CoastalCountry is a defined class

because it contains necessary and sufficient conditions as part of the class specification as

shown in Figure 56.

Figure 56. Defined Class Example

The necessary and sufficient conditions of the CoastalCountry class

imply that any class that is country and has a land type of Coastline, amongst other

things, is, by definition, a CoastalCountry. If this class was defined as primitive,

with necessary conditions only, such unambiguous inference cannot be made. The

primitive restrictions are insufficient to infer that the satisfaction of these conditions

implies that it is the named class. It is crucial for developers to understand that unless

classes are complete, using necessary and sufficient conditions, the classifier does not

attempt to inference class subsumption. While the primitive class can only define its

conditions, defined class are also defined by them. This difference is shown in Figure 57.

Necessary &
Sufficient Conditions

 78

Figure 57. Necessary vs. Necessary & Sufficient Conditions

The OWL construct used to indicate the defined class condition is

owl:equivalentClass. As mentioned in the previous chapter, this construct states

that the class being defined has the same description, or list of individual members, as the

conditions specified under the owl:equivalentClass tag. The necessary and

sufficient definition of CoastalCountry using owl:equivalentClass is shown

in Figure 58.

Figure 58. Definition of CoastalCountry in OWL

NAMED
CLASS

CONDITION

CONDITION

CONDITION
implies

Necessary Conditions

NAMED
CLASS

CONDITION

CONDITION

CONDITION
implies

Necessary & Sufficient Conditions

 <owl:Class rdf:ID="CoastalCountry">
 <owl:equivalentClass>
 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasLandType"/>
 </owl:onProperty>
 <owl:allValuesFrom rdf:resource="#Coastline"/>
 </owl:Restriction>
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasLandType"/>
 </owl:onProperty>
 <owl:someValuesFrom rdf:resource="#Coastline"/>
 </owl:Restriction>
 <owl:Class rdf:about="#Country"/>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>
 </owl:Class>

 79

Classifiers cannot make assumptions about class subsumptions without the

“necessary and sufficient” descriptions that makes classes complete. OWL ontology

experts argue that developers do not sufficiently understand the importance of defined

classes and wherever applicable, many classes should have a complete definition

[Horridge, 2004, 57].

e. Complex Classes: Proper use of Logical Operators “AND” &

“OR”
Complex classes are built from joining simpler classes using logical

operators such as “AND” (∩) and “OR” (∪). Complex classes are named classes, but

with their restrictions stated under an anonymous class declaration. A class created using

the AND (∩) operator is an intersection class. An intersection class combines two or

more classes, using an anonymous class description that restricts the individuals to the

members of the intersection of these classes. A complex class created using the OR (∪)

operator is a union class. While the intersection class is made up of only the member

belonging to all classes specified, a union class encompasses all the members of the

classes included in the union, as diagramed in Figure 59.

Figure 59. Intersection Class vs. Union Class

The application of intersection and union operators are commonly misused

because the logical conjunction and disjunction do not intuitively correspond with the

linguistic use of “and” and “or.” The English statements such as “Name all the political

Women Men City Country

Union Class Intersection Class

CityState People

 80

geography entities that are city and country,” does not make it distinctly clear whether it

refers to entities that are simultaneously city and country, or both entities that are city and

entities that are country. In its logical use, AND refers to the intersection, which make up

the subsection, including members that belong to every intersected class.

The Geography ontology example of an intersection class is CityState

(City∩Country). This class is defined in a way that the members must belong to

both the City and Country classes; they are simultaneously individuals of City and

individuals of Country.

A union class, with the logical use of OR operator, contains all the

members of each class included in the union. In the Geography ontology, the People

class is a union class, (Men∩Women). Members of the People class include all the

individuals of Men and all the individuals of Women.

6. Classify Ontology with a Reasoning Tool
One of the main advantages for developing an OWL-DL ontology is its

compatibility with classification or inferencing tools. These tools validate and find new

classifications of the class hierarchy based on the class descriptions. The inferred

classifications provide the developers with error-checking as well as recommendations on

how the classes should be organized. This is tremendously valuable, especially with a

large and complex ontology, because it allows the developers to verify the consistency of

the class descriptions with the overall schema of the ontology. It is recommended that

after every iteration of class descriptions, the developer should invoke the classifier to

check the validity of the definitions. Classification tools, such as RacerPro, output any

errors or inconsistencies they find in the ontology.

Classifiers are also important for identifying multiple class inheritances. Multiple

inheritance occurs when a class belongs to more than one superclass. When this happens,

the inheriting class takes on the characteristics of all of its parent classes. Based on

necessary and sufficient conditions of the classes, RacerPro finds classes that should be

subsumed under more than one class. Although it is possible for the developers to

designate multiple inheritance classes manually, it is recommended that the they create a

 81

simple class hierarchy and let the classifier infer the multiple inheritances based on the

class descriptions. It is argued that this method allows for a more manageable and

modular ontology, which minimizes errors and maximized reuse of the ontology

[Horridge et. al., 2004, 69].

Using Protégé as the ontology editor, the Geography ontology can be classified

using RacerPro as the backend reasoning engine. Figure 60 shows the developer’s

ontology before classification.

Figure 60. Ontology Before Racer Classification

The ontology, shown in Figure 60, consists of primitive and defined classes,

differentiated by the yellow and orange icon colors respectively. The goal of classifying

the ontology, based on the conditions and restrictions of the user-defined classes, is to

find inferred relationship. This is especially important as an ontology grows in size and

 82

complexity. However, even when an ontology is relatively simple, RacerPro finds and

checks the common classification errors made by developers.

When the Geography ontology is classified, RacerPro finds the errors as shown in

Figure 61.

Figure 61. Ontology After Racer Classification

According to RacerPro’s inferencing engine, the user-defined Geography

ontology, represented under “Asserted Hierarchy,” has three classification errors. First,

RacerPro infers that CityState, which was defined above as an intersection of two

classes, City∩Country, has multiple inheritances; CityState is a subclass of both

City and Country. RacerPro infers that the since the complex class description, the

intersection of two classes, is defined as a necessary and sufficient condition, is should be

Reclassificatio
n of

Reclassification of
Men and Women

 83

subsumed under City and Country classes separately. RacerPro’s second and third

inference results state that the Men and Women classes should be subsumed under, rather

than being siblings of, the People class. Like the CityState example, the class

description of People is complete or defined, implying that the satisfaction of the class

conditions infers equivalence with the class itself. Since the People class is defined as

a union class, Men∩Women, all the individuals of these two classes also belong to the

People class.

7. Create Individuals and Fill Property Values
OWL instantiates the ontology classes by creating individuals. Individuals

represent the actual real-world entities of the interested domain that the ontology is

attempting to categorize and link by property relationships. Furthermore, as shown

throughout this chapter, individuals are used as part of class description and restrictions.

As stated in Chapter Two, there are specific OWL constructs used to denote semantics of

individuals, such as owl:hasValue, owl:sameAs, and owl:differentFrom.

Likewise, individuals are used to define enumerated classes using owl:oneOf.

Many individuals that are included in an ontology are determined early in the

development process, when the domain concepts are informally listed in Step Two of the

development methodology. The concepts that were at the lowest level of specification, or

cannot be grouped as a class, become the individuals. Unlike the other entities of an

ontology, such as classes and properties, individuals are the actualization or instantiations

of the descriptions. In the Geography ontology, some of the concepts appropriate as

individuals are Italy, France, Mexico, Rome, VaticanCity, PacificOcean,

GangesRiver, MtVesuvius and LakeOntario.

 84

Figure 62. Example of the Individual Florence

Figure 62 shows the list individuals of the City class. For each individual, there

is an associated list of properties specified in the class definition. These property values

are determined within the individual description, as shown in the Protégé editor window.

Since properties denote relationships between individuals, or between an individual and a

datatype string, the developer inputs these values at the individual instantiation stage of

the developments. For example, the individuals of the City class have the

containsPhysicalGeography, adjacentTo, locatedIn, and

hasPopulationCount property values to be filled as part of the individual

instantiation. The instance Florence fills those properties slots with the appropriate

values as specified in Figure 62.

Although this step is the least difficult step of development stages, it is the most

time consuming. Depending on the domain and scope, the number of individuals can

grow tremendously large. However, as long as the schema of the ontology is fully

developed and structurally valid, managing the individuals should not pose a challenge.

E. OTHER CONSIDERATIONS FOR ONTOLOGY DEVELOPMENT

OWL allows an ontology to import other ontologies. In the famous Wine

ontology, the creators import the Food ontology to describe and pair the various types of

Individuals

Properties

Meta Data

 85

wine with food. By importing the Food ontology, the developers are able to make use of

all the Food classes, properties, individuals, and axioms as part of the Wine ontology and

as part of the Wine class descriptions. Developers can also extend the imported ontology

by adding further description of the Food classes. It is important to understand the

difference between ontology reference and importing. References to other ontologies are

commonly made using namespaces, such as rdf and rdfs, but the references do not

allow the user to manipulate the objects of these ontologies. Importing allows the

developer to have access to all of the axioms and objects of the ontology that are

unavailable by reference. Furthermore, OWL imports are cyclic in that Wine ontology

can import the Food ontology and the Food ontology can import the Wine ontology.

Ontology imports are integrated to the existing ontology using namespaces similar

to references. The namespace is associated with the URL, where the ontology is located.

The Geography ontology imports the countries.owl ontology, which lists the ISO

3166 country codes, available through Protégé ontology library.11 This URL for this

ontology is http://www.bpiresearch.com/BPMO/2004/03/03/cdl/Countries, which serves

as the default namespace (Figure 63).

Figure 63. Importing Ontologies with Protégé

11 Contributed by Dieter E. Jenz, Jenz & Partner GmbH, http://www.jenzundpartner.de/index.html.

Imported
Ontology

 86

The namespace URL has a # sign attached to it as a separation marker between

the URL and the entities within the ontology. The namespace, which uniquely identifies

the imported ontology, is associated with every entity of the imported ontology.

However, rather than including the long URL with every class, property and individual, a

prefix is used in its place. In this case, the prefix "country" will be used as the

namespace. Once the Country ontology is imported, all the entities are “visible” to the

geography ontology, as shown in Figure 64.

Figure 64. Classes and Properties from Imported Ontology

Figure 64 shows the imported ontology has a prefix associated with every class

and property. Now these objects can seamlessly be integrated into the Geography

ontology as class descriptions and even take on extensions unique to this ontology.

F. CONCLUSION

This chapter provided a methodology for developing an OWL-DL ontology. The

recommended seven steps approach, described above, should be used as a guide for

SMEs to build an ontology in their areas of expertise. As emphasized earlier, since the

scope and application of the ontology determines the content and structure of the

ontology, a significant effort should be spent on understanding the goal of the ontology,

as described in step one. Once that is defined, informally listing the relevant terms of the

Imported Ontology
Designated with Prefix

 87

domain, step two, is the best method to finding the appropriate class objects of the

ontology. Step three organizes those concepts into the class hierarchy. It is important at

this stage to understand the difference between classes and individuals as well as the

relationship of subclasses. Next, define the properties of the domain, as described in step

four. OWL offers multiple property constructs. Understanding the semantics of these

types of property and the kinds of relationship they imply are important in creating a rich

ontology. Step five involves using these properties and other constructs to restrict and

describe classes. Developers are advised to avoid common errors by using existential

restriction as the default and using closure axioms to further limit the class definition.

Likewise, it is important to remember that OWL is a language with open world

reasoning. All necessary description should be stated explicitly. This step also explains

the difference between primitive and defined classes. Classes are categorized as defined

only when they use necessary and sufficient conditions as part of their descriptions.

Once the classes completely defined, classification engine is used to inference the

ontology, as stated in step six. It is at this stage where ontology validity and consistency

are checked using an inferencing tool such as RacerPro. And finally, step seven

describes how individuals are instantiated. They represent the real-world entities of the

ontology's domain, rather than their abstractions.

Although these seven steps were described linearly, the development process is

iterative, as in the spiral model. It is likely, and even recommended, that the developer

move forwards and backwards through the steps as necessary to improve and modify the

ontology. And like other systems, success of an ontology depends on good management

and maintenance. The structure of an OWL ontology makes it suitable for maintenance

and updates.

Given the difficulty of modeling real-world domain and knowledge into abstract

ontological model, developing any ontology is a challenge. However, with a thorough

understanding of OWL semantics and detailed planning of the development process,

SMEs and others developers can build a useful knowledge representation system.

 88

THIS PAGE INTENTIONALLY LEFT BLANK

 89

IV. ONTOLOGIES AS KNOWLEDGE BASES

A. INTRODUCTION
We define an effective search as one which returns to the user a set of highly

relevant results. Using the appropriate keyword(s) is essential for successful research

when performing a conventional internet search. Very broad keywords will result in a

large number of hits, many of them useless. In order to take advantage of currently

available search engines to return topic-specific results, a highly relevant list of keywords

and phrases needs to be formed. To develop such a list, users need to have access to

knowledge of the domain of context. An ontology, which is model of a domain of

context, can support the identification of precise and relevant keywords.

The Ontology-Aided Knowledge Discovery Assistant (OAKDA), pronounced

"Oak D-A," developed as part of this thesis is an application that attempts to assist users

to improve their Web searches by providing domain context to the search word or phrase.

By navigating the ontology, users are assisted in finding a relevant set of key terms that

will aid the search engines in narrowing, widening, or refocusing a Web search. The aim

is to enhance the relevance and precision of the returned results through the use of a

context provided by ontologies associated with each search. Additionally, in the process

of mining the ontology, the users can discover knowledge about the concept of interest

and other related terms in the domain. This chapter focuses on the purpose and

motivation for the OAKDA and how ontologies can be used to augment the tools used to

manage the vast amount of information and resources available in the Web.

B. MOTIVATION FOR USING ONTOLOGIES

An ontology can be defined as a formal explicit description of concepts in a

domain of discourse, properties of each concept describing various features, attributes of

the concept, and restrictions on these properties that are specified by semantics, or rules,

that follows the “rules” of the domain of knowledge (Ushhold et al., 1996, X). For these

reasons, ontologies may have use as knowledge bases (KB) for an application attempting

to add context to a particular search word or phrase. By navigating the ontologies, users

 90

can understand the context of a particular concept as well as the relationships it has with

other concepts. Interest in the use of ontologies as knowledge bases is growing rapidly.

If the availability of these ontologies increases, their importance may become more

significant. Since no one ontology can cover all aspects of a domain and no two

ontologies of the same domain will be the identical, users receive greater value by

accessing as many ontologies as possible. Similarly, ontology developers can benefit

from each other since ontologies can be built on top of others, expanding the breath and

depth of any domain. Once developed, ontologies can be widely distributed and shared

and used by both people and application systems. This scenario is what makes ontologies

potentially very valuable.

 The fundamental purpose of an ontology is to improve the ability of humans and

machines to make judgments about data. Humans obtain and process information by

reading the written word, whether on paper or on a computer screen. Our understanding

of how humans decipher and process written language is not well understood and

consequently, we've not managed to endow our machines with the same capabilities.

Therefore, when machines require information, it must be in a language and structure that

can be understood by them. This is where ontologies are valuable by providing a method

of translation. Undoubtedly, there is something lost in the translation for humans.

Ontologies require people a good visualization strategy to be more easily accessible. For

human beings, ontologies are more limited in terms of their descriptive power as

compared with prose but can be useful in certain situations to provide a succinct

overview and hierarchy of a domain.

Regardless of the growing variety of applications using ontologies, the benefits of

using a knowledge representation system in a form of an ontology are reusability,

interoperability, reliability, maintenance, and knowledge acquisition. Although the

method of making this communication differs with applications, an ontology allows both

humans and machines to have a method of communicating a domain knowledge in a

consistent manner.

 91

 According to Jasper et al., there are four broad categories of ontology

applications, namely neutral authoring, ontology as specification, common access to

information, and ontology-based search. (Jasper et al., 1999, 6)

In “neutral authoring”, information is documented in a single language, which is

then converted into different forms for reuse in various target systems. The main

motivations for using this type of ontologies are the cost benefits of reuse and the

portability of knowledge across multiple applications. In order to support neutral

authoring, supporting technologies such as a unidirectional ontology translator is

required.

“Ontology as specification” applications use a single ontology of a particular

domain as the knowledge specification basis for developing a particular type of software.

Since the software relies on the ontology to provide specific information of a domain, the

ontology requires rich semantics with as little ambiguity as possible. Unlike the neutral

authoring approach, this application does not translate the ontology so much as it guides

the target software development. Benefits of such systems include documentation,

maintenance, and reliability of the domain knowledge.

Ontologies used as “common access to information” translate information into

multiple formats. Using a mapping technique, the ontology renders sharing information

between different platforms intelligible by using a shared understanding set of terms.

The ontology provides a way of interoperability and knowledge reuse of disparate

systems. Supporting technologies include translators and parser generators.

Finally, “ontology-based search” applications are used to search information

repositories for relevant resources. The motivation of using an ontology to assist the

search is to retrieve a more precise result. These applications require technologies such

as ontology browsers, search engine and inferencing tool.

 The OAKDA falls into the last category of ontology application. The goal of this

application is to assist users in obtaining better search results by exploring the knowledge

contained in ontologies. Rather than relying on brute Web search engines approaches,

using OAKDA to “explore” a relevant domain and all the related concepts, relationships

and properties of a search term would lead to a more effective list of results. Since the

 92

tool has the capability to traverse the pertinent ontology that relate to the user’s area of

interest and graphically view all the relevant concepts and their relationships, it allows

the user to explore and better understand the domain of interest. This is a different

method of retrieving and discovering information than a simple brute Web search.

C. KNOWLEDGE DISCOVERY USING ONTOLOGIES
It is best to illustrate the benefits of using ontologies to discover knowledge by

using OAKDA with a number of example ontologies. The examples presented in the

following three sections show how mining ontologies assist in domain knowledge

discovery and the search for the right resources on the Web in the domains of wine,

cartoon and geography.

1. The Wine Domain
Since the proliferation of the web pages on any topic imaginable, when someone

wants to find information on a given subject the internet is now the first place to search.

Whether it is for a profession, academic or personal purpose, the phrase “Google it” has

become the ubiquitous solution. However, depending on the topic, “Googling” can

actually provide more questions than answers. For example, if a user wants to search the

Web on the topic of wine, there is no limit to the kind and number of resources produced

by brute force search engines like Yahoo! and Google. For instance, a search of the word

“Bordeaux” in Google results in 16.4 million hits, including sites for tourism to the

Bordeaux region, the Université Bordeaux, as well as Web sites selling Bordeaux wine,

as shown in Figure 65.

 93

Figure 65. Google Search Results

These resources, while numerous, are not useful to someone with limited

knowledge about wines in general and Bordeaux wines in particular. In fact, the

information overload may creates more problems than solutions. When a user is

unfamiliar with the search term, he or she greatly benefits from understanding the domain

knowledge of the concept of interest. In other words, the user should learn the context in

which the search term or topic belongs.

One way of gathering information is to read a book in that subject or even peruse

through all the various Web sites that the search term retrieves. The first method may be

the most effective way of obtaining thorough knowledge on a topic, especially if the

subject involves complex ideas or relationships. The second method of perusing all the

various Web sites may be helpful and by process of elimination one can deduce the

appropriate context of their search. However, without prior knowledge of the domain

context, blind search can lead to misinformation. In both cases, the knowledge discovery

can be time consuming. The third method is the use of an ontology. In this case, wine

domain would be graphically represented in terms of classes, instances, and property

relationships.

 94

Although humans are trained to glean information primarily from text, graphical

representation can aid understanding. By representing ontology graphically, individuals

may be able to “learn” certain important facts about a knowledge domain more efficiently

than reading text off of a page.

In the case of the user searching on the topic Bordeaux, the user should first learn

that it is a type of wine that is a special variety due to the location of its origin. This

information is available if the user has a method of navigating a wine ontology to find

how Bordeaux wine relates to other types of wine and what characteristics of Bordeaux

distinguishes it from different wines, as well as other relevant concepts and relationships

of the wine domain.

There are various methods to “read” or mine an ontology. It can be displayed in

the OWL syntax or other ontology languages. Otherwise, for easier visualization,

ontologies can be viewed using an editor such as Protégé. Figure 66 shows the Bordeaux

as a class in the wine ontology in the Protégé ontology editor.

Figure 66. Protégé View of the Wine OWL Ontology

Using Protégé, the user is able to view all the classes, properties and individuals

of the ontology. The asserted ontology, shown in the leftmost window of Figure 66, is

 95

classified using the classifier RacerPro to produce the inferred ontology in the second

window. Based on the asserted description, the inferred ontology shows that the

Bordeaux has two major subclasses, namely Red Bordeaux and White Bordeaux. Within

these two classes of Bordeaux wine, there are other subclasses, each distinguished by

their unique characteristics, such as region and type of grape used, while inheriting all the

traits of the parent classes, Red Bordeaux or White Bordeaux.

Protégé, like other ontology editors, makes it easy to read and navigate an

ontology. However, in order to mine an ontology using an editor, the user must know

exactly what ontology he or she needs as well as have access to them to load into the

application. If users have no knowledge about their domains of interest, it is unlikely that

they will have access to the appropriate ontologies. For those users, Protégé is not useful

as an ontology-based search application. Protégé is an application more appropriate for

ontologies developers rather than the users.

The OAKDA proposes to fill the gap between available ontologies representing

various domain knowledge and the resources on the Web. It is an application that allows

users to search its database of ontologies for their search term of interest and find the

appropriate ontology that fits the appropriate domain. When users specify a search term

of interest, OAKDA allows them choose from various ontologies and navigate along the

most relevant ontology tree to discover related concepts and relationships that were

previously unknown to them. Using the example above, one can search the OAKDA

database of ontologies for the term “Bordeaux” as shown in Figure 67.

 96

Figure 67. OAKDA Search Screen

Once the search term is submitted and OAKDA finds a match in the database, it returns a

list of hits, as in Figure 68.

Figure 68. List of Knowledge Base Search Results

As Figure 68 shows, all the related terms are extracted from the wine OWL

ontology. The “SCORE” of the search results is the ranking of match “closeness” and the

“TYPE” refers to the element’s OWL ontology object types, such as class, property or

individual. Once the user reviews the results, he/she may begin to have a better idea

about what additional information is relevant to their original search. In this case, the

 97

user may be interested in learning more about Red Bordeaux. If the user clicks on that

term, OAKDA generates a graphical representation of the Red Bordeaux class and all the

objects related to this main concept of interest. Figure 69 shows the Red Bordeaux object

as the middle node and all the related objects, in this case super and sub classes of Red

Bordeaux Class. The direction of arrows from the Bordeaux class as well as the color of

the node identifies the type of class.

Figure 69. OAKDA View of Red Bordeaux Class

From Figure 69, the user discovers that Medoc is a subclass of Red Bordeaux for

which the user would like to obtain additional information. The user can reorient the

graph, using the "Orient about Node" command, which will show the Medoc class as the

new central object of the graph. Figure 70 shows the result of the new orientation. Using

this tool, one can easily navigate along the tree of the ontology hierarchy and view the

classes, properties and individuals related to the search term of interest.

 98

Figure 70. OAKDA View of Medoc Class

After the graph is reoriented around the Medoc class, the user finds that there are

two types of Medoc Red Bordeaux wines, known as Margaux and Pauillac, which are

subclasses of the Medoc class. It also shows that the Medoc class inherits its properties

from three parent-classes, Dry Red Wine, Red Table Wine and Red Bordeaux. That is,

Medoc is a type of Red Bordeaux as well as a red table wine and a red dry wine. Hence,

the user acquires knowledge about the domain he or she is interested in by traversing the

ontology that graphically displays all the immediately related concepts and relationships

of the search term.

Furthermore, the OAKDA application automatically inferences any ontology

loaded into the system, hiding the detail between asserted and inferred relationships

between classes, as displayed in the Protégé ontology editor in Figure 66. It is the

inferred ontology, classified through RacerPro that identified all the multiple inheritances

of the Medoc class. When the user searches the ontologies using OAKDA, the

inferencing automatically occurs behind the scene and the user is able to view a valid and

accurately classified ontology.

In this simple example, OAKDA shows how it can assist users to search for

additional information around the initial search term without the user having an accurate

understanding of the domain or context of the term. All the concepts in this example

 99

were in the class level of the ontology. However, users may also use OAKDA to find

instances and attributes of the search term. Examples of discovering these concepts and

relationships in OAKDA are explained in next two sections.

2. The Cartoon Domain
When applicable, OAKDA also displays individuals and properties, along with

class concepts. For example, suppose a user is interested in finding resources on the

search term "Millicent." This concept does not provide enough information to retrieve

meaningful search results without additional context. To add context, also suppose that

the user knew that Millicent is a cartoon character. However, even with this additional

contextual information, performing a brute search on the terms "Millicent and Cartoon"

lists results that does not provide user with a consistent set of contextual or domain

knowledge. Instead, it would be helpful if the user can navigate the cartoon ontology to

understanding exactly where Millicent fits in the world of cartoon characters.

Once the user searches the term in OAKDA, it will list all the relevant ontologies

that have Millicent as a match. When the search returns the results of the match,

Millicent is found as an individual in the cartoon ontology. Figure 71 shows Millicent, as

the center node and highlighted in yellow, as an instance of the Mickey Mouse class. It

also shows that it has property relationships with other individuals. For instance,

Millicent has an “is niece of” relationship with Minnie, which in turn has an inverse

property, “has niece” relationship, with Millicent. As mentioned in the previous two

chapters, class properties denote relationships between individuals. Therefore, properties

are not visible to the users unless there are instantiated individuals in the ontology.

 100

Figure 71. OAKDA View of Millicent Individual

Similar to the wine ontology example above, the best way to navigate an ontology

or explore the domain using the OAKA application is to reorient the graph around

different objects of the ontology graph. After understanding all the relationships around

Millicent, the user may want to discover more information about Mickey. This

completely reorients the ontology graph with the new object, Mickey, as the center of the

graph, as shown in Figure 72.

 101

Figure 72. OAKDA View of Mickey Individual

In Figure 72, the Mickey individual is now the central point of the graph and all

the immediate concepts and relationships are depicted around the new object. The new

graph now shows a different section of the ontology revealing other concepts that were

not included as part of the Millicent graph. When the OAKDA graph is centered on an

individual, as in Millicent or Mickey, the user sees all the different relationships that the

key concept has with other objects or values. Again, the user not only discovers

information about the original search term, the user also gains knowledge on the

tangential concepts of the domain.

Once the user obtains sufficient knowledge about the domain and the relevant

contextual terms, he or she will have a better understanding of the types of information or

resources to search for on the Web. OAKDA makes it easy for the user to design a list of

search terms based on the graphical ontology representation. When the user finds a term

that belongs as part of the search string, he or she can simply uses a right-click drop-

down menu of the mouse to add it to a list. Figure 73 shows how a user adds the name of

an object to the search list, using the "Add as Search Term" command.

 102

Figure 73. Adding Terms to the Search List

The user may add as many terms as desired; however, just as having too few

selections can lead to an overload of Web page “hits,” too many search terms may

eliminate many relevant resources. It is recommended that the user choose different

combinations of relevant terms to compare the results of the matched resources.

Once all the search terms are added to the OAKDA list, the user can manually

edit them as appropriate. In the case of Millicent, the user has learned by using OAKDA

that it is an instance of Mickey Mouse cartoon character. Therefore, the list of search

terms include “Millicent” and “Mickey Mouse.” In Figure 74, the user can combine

these two terms using different logical operators to perform the Web search. These

operators have the same restrictions and conditions as those available in most search

engines. The default, likewise, is the “AND” operator as is in other search tools.

 103

Figure 74. OAKDA Web Search Parameter List

Although the list in Figure 74 is relatively simple, it adds a context to the term

Millicent that the user did not know before using OAKDA. Rather than just searching on

“Millicent” or “Millicent and cartoon,” the above list of terms provides the relevant

context to the user’s Web search. Once the list of search terms in complete, the user

submits the query to OAKDA. Figure 75 shows the results of this query.

Figure 75. Web Search Results

 104

The list of results shown in Figure 75 is derived using the same brute force search

algorithm used by most search engines such as Google and Yahoo! However, by

tailoring the list of search terms after discovering relevant domain or contextual

knowledge of the user’s initial query, the Web search matches will be significantly

different from the original set. The contribution that OAKDA makes is not to change the

way Web searches are performed, but to assist users to get the most appropriate

information by providing a method of obtain additional knoweldge about their term of

interest.

3. The Geography Domain
Even in a domain that a user may be familiar with, it is possible to discover new

relationships by mining the domain ontology. If an ontology is developed as a domain

knowledge representation (KR) for general application purposes, it can be used as a

reference to easily learn new information. The geography domain falls under this

category. As detailed in Chapter 3, this ontology was developed for the purpose of

demonstrating the ontology development methodology, and also to be used as one of the

ontologies in the OAKDA knowledge base. In this section, an example of how to use the

geography ontology for knowledge discovery will be shown using OAKDA.

Suppose a user is deciding to go on vacation and want to find a place that meets a

certain set of criteria, such as physical geography features and proximity to other

locations. Of course, he or she can go to travel Web resources to discover different

destination options. However, obtaining a better understanding of the world geography

domain can help narrow down the traveler’s options. For instance, a particular traveler is

a nature-lover who is interested in finding a location that is near a lake, river, and

mountain, and possibly all this one a small island. This traveler is also interested in

seeing different types of physical geography in a relatively small area or a place where he

can walk through a rainforest as well as a desert. In order to discover such a location, the

traveler needs to find information on the different geographies of potential destinations.

Using the OAKDA application, the user decides to search on the term "island

country" as a start. A list of ontology matches is presented and the user selects the most

relevant concept from the geography ontology, having the highest score ranking.

 105

OAKDA graphs the Island Country class, as a center node, and its related concepts as

shown in Figure 76.

Figure 76. Island Country from the Geography Ontology

The graph shows that there are several individuals, shown as oval nodes with the

arrow point towards the center, of the Island Country class. This implies that these are

real-world instantiations of the island country class, and shown in the results the user

confirms that these individuals are island countries. The user can learn more about any

one of these individuals by reorienting the graph around that node. In this case, the

traveler wants to find more information on Madagascar and reorients the graph around

that individual node. Figure 77 shows the resulting graph. In general, an ontology's

richness is represented at the instantiation level. While the ontology graph at the class

level merely shows the taxonomy of classes and their instances, orienting the graph

around an individual node provides information on its class as well as all the property

relationships it has with other individuals. In other words, the information presented at

this level displays all the semantic relationships the individuals have with others in the

domain. Reorienting the ontology graph around Madagascar individual, the user now can

see all of its relationship to its class as well as the types of relationships or links, shown

 106

as a circle node between two individuals, it has with all the other individuals in the

ontology.

Figure 77. Madagascar Individual Centered View

According to the geography ontology, shown in Figure 77, Madagascar is an

island country located in the continent of Africa and is surrounded by the Indian Ocean.

It has a Tropical Humid climate and it contains such geographical features as

Maromokofro Mountains, Anjafy Plateau, Mahajamba River and Lake Alaotra.

Madagascar also has a rainforest, named Masoala. All this information can be gleaned

from the OAKDA graph representation of the Madagascar individual. Furthermore, the

traveler also finds out information he was not specifically searching for but may find

interesting or useful, such as the languages spoken in Madagascar includes French, and

that it is governed by a republic government. In this example, the user finds a match to

his search for an ideal location for a vacation by mining the geography ontology, and can

narrow his Web search for a travel agency or resource accordingly.

 107

In this example, the user was not necessarily looking for an appropriate context or

domain of a search term, rather the user used the application to find a match to a set of

criteria. That is, starting from a high level concept, island country, OAKDA helped the

user drill down the ontology to the representation of real-world entities, individuals,

where the user can learn all the attributes or properties they have with other entities. For

instance, by mining the individuals of the island class, the traveler narrows down his

options to those that meet his criteria. Of course, the user could have begun his search

with a different term, such as rainforest or tropical humid climate and come to the same

results. No matter which node of the ontology the search or mining starts, OAKDA

allows the users to traverse up and down the tree to find the related information.

However, it is only at the lowest level of detail, or instantiation of classes, that one is able

to see the rich semantic relationships of individuals and where find detailed and complex

knowledge about the concept of interest and the domain overall.

Using OAKDA, users can focus on a narrow area of interest from relatively a

large domain, such as a geography domain. Rather than search through volumes of

mostly irrelevant web pages to find the right combination of information, one can quickly

get to the necessary information in one site by searching for the right node and then

mining its related concepts. In this example, the user understands the basic relationship

of the geography concepts, but needed to know the specific instances that had the right

combination of search criteria. OAKDA provided the traveler with the appropriate

geography domain content information that allowed him to discover new knowledge that

is of interest to him.

In the three examples of using OAKDA to assist in Web searches suggest there

may be utility in using ontology to discover knowledge of value to users. It can be as

simple as navigating the class hierarchy of a domain, such as the wine example or as

complex as learning all the minute relationships of the individuals. The goal of the

OAKDA application is to assist its users to easily discover knowledge or information that

is difficult with a Web search engine alone. Furthermore, by representing the ontology

graphically and reorienting around different nodes, it is easier to grasp the high and low

level details than an OWL document or even an ontology editor tool like Protégé.

 108

D. OTHER ONTOLOGY SEARCH APPLICATIONS
Using ontologies in a search capability is not unique to OAKDA. Ontology's

semantic richness represented in languages that are XML based, such as RDF,

OIL+DAML, or OWL, makes it a powerful tool. Specifically there are two application

of interest, namely OntoSearch (http://www.ontosearch.org/) and OntoXpl, that are

relevant to OAKDA.

OntoSearch is an application that searches for ontologies via the Web. The goal

of this application is to encourage reuse of knowledge bases represented in ontologies

and provide a mechanism for searching for existing ontologies on the Web. The user

inputs the search word or words and the application finds the matching ontologies

available on the Internet. The user also selects the "type" of ontology needed, namely

RDF, RDFS, DAML, or OWL. Similar to OAKDA, OntoSearch also allows graphing

capabilities of ontologies. OntoSearch is an important application that complements

OAKDA. The success of the OAKDA depends on the availability of ontologies that

covers all the various domains of the real world. It needs to build a library of ontologies

as its database and the OntoSearch application is a useful tool to find those that are

available on the Web.

The OntoXpl, Ontology Explorer Tool, is an application developed at the

Concordia University (Canada) that assists in the exploration of ontologies using Racer as

an inferencing engine of OWL DL. This application is to complement ontology editors

and visualizations tools such as Protégé, with the emphasis on exploring different levels

of an ontology. The user choose an ontology and the application models it into eight

browsing categories, namely "file selector, "natural language" description, structural

information, exploration of concept/property axioms, inspection of concept and role

hierarchies, view of statistical information, inspection of A-box graph structure, and the

interactive use of RACER's query language, nRQL." (Haarslev et al, 2004, 3).

Although these other ontology-based applications exist, OAKDA is unique in

storing a database of ontologies and matching the user search term to the appropriate

ontology. This aids the users to find relevant domain content and design Web searches

 109

that will result in the most useful list of resources. Unlike OntoSearch and OntoXpl,

users need not know anything about ontologies to use the application. OAKDA is an

end-users' tool rather than a developer’s one.

E. CONCLUSION
 There may be great value in representing knowledge in a format that can be

processed by machines, as well as humans. By leveraging the available semantics of

RDF and OWL, ontologies can model the concepts and relationships of a real world

domain that systems can "read" and inference based on the rules of logic. Since valid

ontologies are often difficult to build, there must be incentives for the domain experts to

construct them. Ontologies can become more powerful as more applications are

developed to take advantage of their structured knowledge representation.

OAKDA is an application that uses a library of ontologies to look for the user

search terms. It hides the details of the OWL constructs and presents the users with an

interactive graph that helps them discover information that they did not previously know

but might be useful for them. Its purpose is to add relevant context to user Web searches

to assist in retrieving the most relevant Web page when using brute force search engines

such as Yahoo! and Google.

 110

THIS PAGE INTENTIONALLY LEFT BLANK

 111

V. ARCHITECTURE OF ONTOLOGY AIDED KNOWLEDGE
DISCOVERY ASSISTANT (OAKDA) APPLICATION

A. INTRODUCTION
This chapter describes in detail the software and hardware architecture of the

Ontology Aided Knowledge Discovery Application (OAKDA) Prototype. As discussed

in the previous chapters, the objective of OAKDA is to leverage OWL-DL ontologies to

help end users to improve upon the formulation of their web search query by providing a

framework and environment to discover terminology that makes their web searches more

relevant and precise.

OAKDA enables the user to augment an initial set of search content with data

derived from ontology files in one or more domains of interest. With additional search

terms and better understanding of the domain of interest, users can create queries that are

both focused and relevant. Results are delivered back to the users through a web search

portal.

The application facilitates the above scenario by providing a framework to:

1. Pre-search a database of ontology files with the user’s initial set of search
terms to help the user locate the ontologies that are relevant.

2. Perform Description Logics (DL) inferencing to represent the selected
ontology in its fullest meaning.

3. Provide a means to for the user to explore a relevant ontology by
implementing a graphical interface that makes navigation between linked
ontology elements easy and intuitive.

4. Assist the user in formatting the gathered search content into a web search
query.

One way OAKDA can be used to explore an ontology is to move up and down the

taxonomy of its classes. Alternatively, the application can traverse an ontology through

relationships between the instantiations of different classes. Asserted content in

ontologies are connected by links between instantiated classes known as “Individuals”.

Individuals in an ontology are related through individual/property relationships. Class

definitions contain members called properties that serve to describe relationships to other

individuals or concrete data types. For example, the class Human may have a property

called hasChild. The hasChild property specifies that it will be “filled” by a class called

 112

Human. Suppose we instantiate two individuals from the Human class and call them

Bill and Mary. If Mary is Bill’s daughter, then we can relate these two individuals

together through the hasChild property relationship where Bill.hasChild Mary.

The following is a typical use case for OAKDA:

• The user starts with an initial search term related to the domain of interest.
The user is assumed to have little acquaintance of the knowledge domain.

• The user searches all stored OWL-DL data for string matches.
• The user navigates a chosen OWL-DL ontology to extract related information

to expand the initial search term.
• The user searches the web with the new terms discovered from the OWL-DL

ontology.

Because the content of an ontology is connected in meaningful ways, the end user

may discover information that they otherwise might not be aware of if they have a means

to traverse terminological (class) and asserted (individual, property) relationships.

An end user may also be able to uncover knowledge domains that contain their

initial search term but are not contextually correct. Knowing about these knowledge

domains may also useful for web search because the information can be used to signal the

search engine to avoid retrieving pages that contain terminology from a domain that is

not relevant.

The following sections describe in detail the system elements of OAKDA.

Section B describes in generic terms, the software architecture framework that OAKDA

development was based upon. Section C provides a description of each component, its

attributes and roles in the application. Section D shows in detail how these components

interact with each other. The conclusion provides some thoughts and lessons learned

during the process of developing the prototype.

B. MULTI-TIER APPLICATION VS. SINGLE TIER ARCHITECTURES
A multi-tier software architecture is a type of client/server architecture whereby

the logical components of the application are segregated by function into a composition

of layers, known as “tiers”, that divide up the components of the system.

 113

Layers of multi-tier applications are defined by groupings of program

functionality similar to encapsulation in Object Oriented Programming. Each layer

represents a grouping of logic that possesses a small number of interfaces that can be

used to send messages. This arrangement creates interconnections with a small number

of interfaces between the tiers. Because only a few interfaces need to be broken to isolate

the tiers, they are considered “loosely coupled”. The goal of having loosely coupled

architectures is to limit the effect that programming changes in one tier will have on other

tiers. The segregation of logic promotes reuse of components and reduces development

and maintenance costs to design by limiting the scope and complexity of each tier.

The multi-tier architecture contrasts sharply with the type of architecture used for

mainframe computing, now known as single-tier architectures. These software

applications consisted of a monolithic cluster of code where all function points were in

scope from any part of the program, i.e. the designers were not constrained from having

presentation logic make direct calls into the data retrieval logic, etc. The effect of this

approach was a design where all parts of the program were “tightly coupled” and changes

to one part of the program would have cascading effects throughout the code. The

Single-Tier design increases the level of difficulty for software maintainability and ability

to change to meet new or evolving requirements.

1. Presentation GUI Tier
This tier is composed of the software installed on the client side computer that

displays a graphical user interface (GUI) for the application. The interface could be a

general purpose program such as a web browser or a specialized program specially built

to interact with a server.

2. Presentation Logic Tier
The presentation logic tier is responsible for provisioning the interface

information to the client side and performing the steps to assemble the content which

users will view and possibly interact with. There are three distinct types of presentation

logic sub-tiers:

1. Web Tier: The web tier is descriptive of systems using HTTP for messaging
between the client and server. The content on this tier consists of HTML,
XML, CSS, and/or JavaScript that is rendered by the client web browser.

 114

Programs on this tier are responsible for assembling content and getting the
data from the business and data access tiers. The Web Tier also consists of
the Web Server and Application Servers responsible to listen for HTTP
request messages from multiple clients and for providing a dispatching
interface to the programs that assemble HTTP responses. All data processing
for this tier occurs on the server side.

2. Proxy Tier: Programs involving the “proxy” tier support a distributed
computing architecture. This tier’s functionality is most often provided by a
third party’s Web Services, described in more detail below.

3. Client Interface: Unlike the Web and Proxy tier, this component will execute
on the client side of the system but its business rules are downloaded from the
server. It is responsible for rendering custom displays for the end user.

3. Business Logic Tier
This tier contains the “business rules” used to perform calculations or transform

and manipulate data.

4. Data Access Tier
This tier includes any components that are used to interact with or access

information on the Data Tier. Examples of these components are operating system API’s

used to store data on host file systems or DBMS (Database Management System) access

API’s such as ODBC (Open Database Connectivity) and JDBC (Java™ Database

Connectivity).

5. Data Tier:
Data that needs to be “remembered” by the application or is used as a driver for

future processing is stored on this Tier. It is the layer that stores all the application data

and is an essential part of any Multi-tier application. The data usually resides in a

database or file system accessible by the server.

As indicated in the previous section, the intention behind structuring software in

Multi-Tier Architectures is to enhance the ability of the system to adapt to change or at

least allow large sections of a project to be reused in new applications. This approach

was chosen for the OAKDA prototype in order to make it more adaptable to changes

during its development and lifecycle.

 115

C. OAKDA PROTOTYPE MULIT-TIER ARCHITECURE
Table 7 below shows an overview of the OAKDA components and their

associated tiers. Additional detail describing each OAKDA tier component is provided in

the section below.

TIER OAKDA COMPONENTS

Presentation GUI Web Browser (Microsoft Internet Explorer, Mozilla Firefox,
etc)

Web

Apache Web server
Tomcat Application server
Java Servlets
HTML
CSS
JavaScript

Proxy Google SOAP Web Services

Presentation
Logic

Client
Interface

Java TouchGraph Applet
Java Http API

Business Tier
Java (match algorithm, data transformations, graph data
construction)
Racer

Data Access Tier
JRacer
Racer
JDBC

Data Tier MySql Database
OWL-DL Ontology Files

Table 7. OAKDA Multi-Tier Component Matrix

1. Presentation Tier
The Presentation Tier code runs on a Web browser. The Web browser is not

actually developed as part of the application; rather it is an off-the-shelf client software

that is required to interface with HTTP messages that OAKDA receives and produces.

Web browsers render Web-based document content into an interactive graphical user

interface. The OAKDA application assumes that a Web browser such as Internet

Explorer or Mozilla FireFox is available to the end user and that it is configured to

process CSS, JavaScript, and Sun Java™ Applets.

 116

2. Presentation Logic Tier
The Presentation Logic Tier provides the information that provisions the user

interface on the client side. The OAKDA application uses the following languages and

components to render a GUI presentation for the end user.

a. Presentation Logic: Web Tier
The Web Tier consists of those Presentation Logic components that use

Internet based languages, technologies and methodologies.

(1) HTML (Hypertext Markup Language) is a non-proprietary

subset of the SGML markup language. HTML is treated as a specification by Web

Browsers for rendering viewable document content and Web forms. The bulk of

OAKDA screens are rendered in HTML

 (2) CSS (Cascading Style Sheets) is a mechanism for adding

style to HTML documents. It performs a number of presentation effects, like positioning,

which serves to augment the HTML specification. CSS is ancillary to the maintainability

and reusability of Web pages by separating the presentation from the content.

(3) JavaScript is a scripting language that executes on a thread

provided by the Web browser’s (client side) process. Web content can be made to be

more interactive and dynamic using JavaScript. In OAKDA, JavaScript is used most

often to implement the Web page navigation scheme.

(4) Apache Web Server – A Web server is a software program

designed to deliver data, usually in the form of HTTP messages, across a TCP/IP network

between client and server computers. The sequence of events for client/server

communication over HTTP is usually as follows:

• The client sends an HTTP request to the server. The request
consists of the IP address of the computer running the server,
the IP of the computer making the request and parameters that
may specify the type of content the client is requesting.

• The Server responds with an HTTP response containing the
requested content, if found.

The Apache Web Server, obtained from the Apache Software

Foundation, was the Web Server of choice for the OAKDA project. It is open source and

 117

freely available software. The Apache Software Foundation is an organization founded

to facilitate the development of several software projects. Since 1999, the Apache Web

Server has been the most visible and popular HTTP server in use on the Internet.

 (5) Apache Tomcat Application Server – A Web server’s main

function is serving HTML documents to a requesting client. However, when the content

of those documents is dynamic, some kind of data processing must be accomplished to

perform calculations or retrieve data necessary to construct the content on the fly.

Application servers are the components that facilitate the interface between a HTTP

message handled by the Web server and the invocation of a specific program to perform

data processing. An application server can be thought of as a type of middleware that

handles messaging between the Web server and the various back-end applications, such

as databases or programs that implement business logic in a data processing environment.

Jakarta, a sub-project of the Apache project, facilitates Java™

based open-source projects. The Tomcat application server is one the Apache Jakarta

projects utilized by OAKDA. Its distinguishing feature is that it enables a special type of

Java™ class called a Servlet to perform HTTP messaging toward the Web server and it is

the program entry point for the invocation of Java™ methods utilizing the server side

components.

 (6) Java Servlets – A servlet is a Java™ class that is built to

interface with HTTP on an application server. It reads HTTP parameters, manages HTTP

sessions, and handles other services such as Web site authentication. Output data is sent

using built-in servlet methods that create the HTTP response messages to be transmitted

to the client via the Web server.

b. Presentation Logic: Proxy Tier
The Proxy Tier is the sub-category of the Presentation Logic that deals

with the use of third party components in the architecture.

(1) Google Web Search Service – Web Services are application

level services which enable inter-process communications between computers across

Internet or intranet network boundaries. When processes communicate, they require the

ability to transmit data arguments to “call” a far process and transmit “return” messages

to a calling program. Web Services provide a framework for transmission of calls and

 118

“return” data via XML formatted request (call) and response (return) documents. The

XML requests and responses are received and dispatched by Web servers, usually over

HTTP. XML and Web Services act as a middleware that eliminates the need for data

processing systems to interoperate directly with each other. Since the remote procedure

calls are performed in a way that is platform non-specific, the programs executing the

business rules do not need to be compliant with each other's software or hardware

platforms. In this way, Web services solve compatibility and interoperability problems

common in other types of network based inter-process communication.

There are three key components to Web services.

• Simple Object Access Protocol (SOAP) defines the XML
grammar for Web services requests and responses. A
SOAP envelope is the name of the XML document that is
transmitted as request or response. Inside the envelope for
a request are the function call names, the parameter list and
all other information needed for the peer system to make a
service invocation. SOAP response envelopes are similar
to requests in that they are a formatted XML documents,
but they contain the “return” data of the request or fault
messages if the request could not be processed.

• The WSDL (Web Service Description Language)
component serves to describe the specifications for the
SOAP request and response document formats.
Analogously, when calling a method of a linked program,
the programmer needs to know the method name, the
parameter list, the data types of each parameter and the
return value. A program that does not properly reference a
method specification will usually not compile. In the case
of Web services, the components that interact are separate
entities with no “awareness” of each other. The WSDL is a
way for the Web services host to advertise the correct
specification that should be used to construct SOAP syntax
for successful interoperability.

• UDDI (Universal Discovery Description Integration) is an
internet or intranet facing directory that serves to advertise
Web service capabilities available for use. The UDDI can
provide the basic information needed to make contact with
a Web service host including the download of a specific
Web service’s WSDL.

 119

(2) Google Web Search API – Google offers free Web services

client software for personal, non-commercial use. After registering for the service, the

Web services client is able to send a SOAP message containing a Web search query to

Google’s Web services host. The host dispatches the query to Google’s internal

mechanisms for searching its database of indexed Web content and returns a SOAP

response to client. The response contains the Web page hits generated by the submitted

query.

The OAKDA application uses a Web services interface to perform

Google Web searches. The response SOAP message is parsed and formatted into the

HTML pages of the OAKDA application. In this way the user gets an end-to-end

capability when using the application. They would otherwise have to transfer to a Web

search portal when they want to perform their Web searches.

c. Presentation Logic: Client Interface
The Client Interface is the sub-category of the Presentation Logic Tier that

provisions a user interface which executes on the client but whose business logic is

downloaded from the server.

 (1) Applets are programs written in the Java™ programming

language that can be embedded in an HTML page, in the same way that image files can

be included. Java™ applets are executed in the client Web browsers Java™ Runtime

Environment (JRE) and are subject to restrictive policies, for security reasons, that

prevent the running program from accessing the local machine's file system or from

making network connection to any computer other than the program's originating host.

The policy is meant to prevent malicious programmers from harming the client side

computer.

The OAKDA application creates a client request to download an

applet from the OAKDA Web server. The applet has add-ins that allow it to

communicate with the Web server and maintain HTTP sessions.

 (2) TouchGraph12, created by Alexander Shapiro in 2001, is an

open-source user interface software used for information visualization and data modeling.

12 http://www.TouchGraph.com

 120

TouchGraph is commonly used for visualization of data points that can be represented in

directed graph format. TouchGraph was extensively modified for use with the OAKDA

application because it did not have a native interface for input of the data representing the

directed graph.

The modifications enabled the software to accept the information

regarding nodes and the connections between them. The software renders the

information in a two-dimensional display interface and simulates “virtual physics” called

“Spring-Layout” which serves to spread the data evenly on the presentation screen area.

Nodes connected by edges will attract each other while all other nodes repel one another.

At short distances, the repulsion “force” of the nodes is stronger than the attraction force

of nodes connected by the edges. The result of this is to cause all nodes to self-organize

in a way where they will not be concealed by other nodes. Also, nodes that are part of a

strongly connected section of the graph will tend to cluster together while weakly

connected parts separate.

The software also provides functionality to manipulate the graph

data on the screen. The nodes can be repositioned by using “drag and drop” mouse

commands, and can be rotated in the viewable area. The interface also has slider controls

that change the intensity of the node repulsion force that is compressing or elongating the

edge lengths in the graph. This is useful when the graph is crowded by a large amount of

nodes because the expansion will increase the readability, but at the expense of the

number of nodes that can fit in the viewable field. The software also has the capability to

hide whole sections of the graph so it can be scaled down to a manageable size. To

restore the hidden nodes, the user clicks on an indicator icon that re-expands the graph.

In the OAKDA application, TouchGraph executes on a client-side

applet. It is used to render only a portion of the user selected ontology. The nodes are

represented by the ontology names for class, property, and individual data. TouchGraph

directional edges connect the nodal information to show the inheritance relationships and

differences in color gradation further underscore direction of inheritance between classes.

All classes are depicted as blue boxes while a darker shade of blue is meant to indicate

that the class is a parent of the lighter shaded class node.

 121

(3) BOT Java™ Package – The BOT Package is client-side

software used for HTTP communication. The package contains programs that have the

capability to manage session and authentication between Web client and server. Jeff

Heaton, who created software robots called “bots” able to automatically traverse linked

Web sites and perform data processing on their content, authored the package. The

“bots” require the ability to manage session and authentication to successfully access

Web site information.

The HTTP Java™ class contained in the BOT package performs

some of the same functions as a Web browser such as Microsoft’s Internet Explorer or

the Mozilla Firefox. The important contribution of the BOT package to OAKDA is the

management of HTTP session information. A session is the sum of all HTTP

communications between a client and the Web server. The HTTP protocol on its own

only manages communications where each request and response pair is independent from

the all others. Hence, HTTP is considered to be a “stateless” protocol. It is important for

the Web application to be able to associate the series of request/response pairs in order to

correctly differentiate between the requests and responses of multiple sessions. Without

this ability, a response could get associated to the wrong client, and misdirect the end

user to an incorrect Web page.

Heaton’s HTTP Java™ class has methods to support cookies,

which are messages sent from the Web server and stored on the client’s host machine.

During subsequent communications, the identifier information in the cookie is sent back

from the client to enable the Web server to track a particular session and the events that

the session registered. Heaton’s HTTP software is also used by OAKDA to enable HTTP

sessions between the TouchGraph applet and the Web server.

3. Business Tier

The Business Tier in a Multi-Tier Architecture contains the component programs

that perform calculations or data transformations.

 122

a. Racer Server
Racer is a data processing server for knowledge representation systems

and description logics. Racer was developed by Ralf Möller13, Volker Haarslev14, and

Michael Wessel15. Knowledge representation, a field of Artificial Intelligence, focuses

on the design of formalisms that are both epistemologically and computationally

adequate for expressing knowledge about a particular domain. (Baader et al., 2003, xiii)

Description logics is a framework for representing knowledge in a form of individuals,

classes of individuals and property relationships that describe them.

Racer acts upon terminological and asserted aspects of ontology data. In

OAKDA, it is architecturally situated as a middleware between ontology markup files,

such as OWL-DL, and the programs that need to access or modify them. Racer provides

reasoning or inferencing as a central service. The algorithms underpinning Racer’s

reasoning engine guarantee "correctness", "completeness" and "decidability."

Correctness means that no false conclusions are drawn. Completeness implies that all

correct conclusions are present and decidability means that there exists a terminating

program that can complete reasoning. Reasoning allows one to implicitly infer

represented knowledge from the explicit knowledge contained in the knowledge base.

(Baader et al., 2003, 43) As an example, suppose it is explicitly stated that X is to the left

of Y and that Z is to the left of X. A reasoning engine infers that Z is also to the left of Y

by the rule of the transitive property, “to the left of”. Racer also provides services to

either publish to or subscribe (query) from an existing knowledge base.

Racer divides ontology content in terms of A-Box and T-Box reasoning

where the A-Box is the set of asserted relationships between individuals and classes or

between individuals and other individuals. The T-Box is the set of classes and properties

of classes arranged in a hierarchical inheritance relationship that describe the schema of

the domain. The classes contain properties that further define them. The “A” in A-box

13 University of Hamburg, Germany
14 Concordia University, Montréal Canada
15 University of Hamburg, Germany

 123

refers to "asserted" content, while the “T” in T-box refers to "terminology" and the

relationships within the T-Box which resemble a schema.

The following is a list of services that Racer has available to the end user.

For T-Boxes, Racer can answer the following queries:

1. Class consistency with regard to a T-Box: Is the set of objects
described by a Class empty?

2. Class subsumption with regard to a T-Box: Is there a subset
relationship between the set of objects described by two classes?

3. Find all inconsistent classes mentioned in a T-Box. Inconsistent
classes might be the result of modeling errors.

4. Determine the parents and children of a class with regard to a T-Box:
The parents of a class are the most specific class names mentioned in a
T-Box which subsumes the class. The children of a class are the most
general class names mentioned in a T-Box that the class subsumes.

For A-Boxes, Racer can answer the following queries:

1. Check the consistency of an A-Box with regard to a T-Box: Are the
restrictions given in an A-Box with regard to a T-Box too strong, i.e.,
do they contradict each other? Other queries are only possible with
regard to consistent A-Boxes.

2. Instance testing with regard to an A-Box and a T-Box: Is the object for
which an individual stands a member of the set of objects described by
a certain query class? The individual is then called an instance of the
query class.

3. Instance retrieval with regard to an A-Box and a T-Box: Find all
individuals from an A-Box such that the objects they stand for can be
proven to be a member of a set of objects described by a certain query
class.

4. Computation of the direct types of an individual with regard to an A-
Box and a T-Box: Find the most specific class names from a T-Box of
which a given individual is an instance.

5. Computation of the fillers of a property with reference to an
individual. Check if certain concrete domains constraints are entailed
by an A-Box and a T-Box use.

In the context of the OAKDA application, Racer’s primary functions are

for query and inferencing of the OWL-DL data. Racer is instructed to upload the set of

OWL-DL relations into its memory and deduce any extra information present through its

inference functions. Once the ontology is present in Racer’s memory, OAKDA initiates

queries that deliver the nodal relationships portrayed in the graphical user interface. An

example of a query is “retrieve all direct subclasses of Class “X”. A formatted query in

 124

Racer’s syntax is sent to the server, where processing takes place and the answer is

delivered back to the source address of the requester.

Racer’s implementation language is COMMONLISP. Racer

communicates via the command line or with a TCP/IP network interface. It listens for

TCP/IP requests messages and issues responses containing the requested information

over the same channel. It can be configured to handle multiple simultaneous users.

Since no “publish” methods are used in the OAKDA system, there is no need for Racer to

maintain session state for each user. Racer is accessed by OAKDA programs through the

user of the Java™ JRacer API, which abstracts Racer function calls into a format callable

by Java™ programs.

b. Ontology Search matching algorithm
In the OAKDA application, the end user searches a database table

containing the indexed content for all OWL-DL files loaded in the system. The indexed

ontology data are accessible through JDBC calls to MySql database that stores the

information. Substring matches are pulled from the database using the SQL “LIKE”

command. A substring match occurs when one string partially or fully matches another

string. "Regular Expressions" are used in later processing to formulate a match closeness

score. A Regular Expression is a pattern of characters that describes a set of strings.

OAKDA uses a regular expression construct provisioned by the Java™ “String” class.

When a substring is found, a score is computed that rates the "match

closeness" (MC). This works as follows: the Query String (QS) is matched against the

Indexed Ontology Element (IOE) string. The string Length Difference (LD) between QS

string length and IOE string length is computed. If QS matches with IOE, the MC score

is calculated as follows:

MC := 1 - (LD ÷ IOE string length);

For example, suppose QS and IOE are given as SENT and PRESENTER. Since SENT is

a substring of PRESENTER, the match score will be computed as:

LD := 5 = 9 – 4
IOE string length := 9
MC := 0.44 = 1 – (5 ÷ 9)

 125

If QS and IOE are given as PRESENT and PRESENTER the score will be 0.77, which is

correctly ranked higher than the previous query. Each indexed node is given a score

between 0 and 1 to rank its relevance to the match.

Users performing a search are not limited to a single search term. Since

the indexed ontology element often is a phrase, more than one term can apply when

searching the database. OAKDA’s programs will parse an element named

TropicalHumidClimate as TROPICAL HUMID CLIMATE. A ranking algorithm

was designed to handle cases where the closeness of match across a phrase needed to be

computed.

Consider an example where the user query string is TROPIC HUMID and

the indexed ontology element is TROPICAL HUMID CLIMATE. The overall match

ranking will be calculated in the following way and as shown in Table 8.
 IOE

QS TROPICAL HUMID CLIMATE

TROPIC 0.75 0.0 0.0

HUMID 0.0 1.0 0.0

Table 8. Preliminary String Match Matrix

1. The best match will be computed for each word. The score
computation matrix for individual string matches is shown in Table 2.

2. The highest scores (in bold) will be used in the overall computation.
3. Any IOE term that did not have a positive score will be assigned the

average score for the all terms.
 Average= 0.58 = (0.75 + 1.0 + 0.0) ÷ 3
4. The total score is the product of all scores:
 Score = 0.44 = 0.75 * 1.0 * 0.58

The intention behind ranking the match similar to the ranking of page hits

in a Web search. The ontology content with the highest score will have the closest match

to the given search terms. The closer the score is to one, the higher ranking in the

displayed list. This algorithm is crude but fairly effective. Future enhancements would

include methods similar to those used by Web search portals.

 126

c. Ontology Batch Loader
Since users benefit when there is an ontology in OAKDA’s repository that

contains the knowledge domain of their interest, the application contains functionality

that enables end users to make contributions to the database. OAKDA enables users to

submit ontology data for other users. OAKDA provides a webpage that allows end users

to input the URL of an OWL-DL ontology that is hosted on the Web. When the URL is

provided and the end user clicks the submit button, the OWL-DL downloads to

OAKDA’s host server. Batch loader programs call Racer functions that read and parse

the class, individual and property nodes contained in the ontology and load them into

OAKDA’s internal database.

4. Data Access Tier
The Data Access Tier comprises programs in the systems that are used to

interface with the Data Tier.

a. RICE JRacer API
The JRacer API is a package of Java™ classes with capability to format

and invoke, via TCP/IP sockets, request messages formatted as COMMONLISP Racer

Server commands. The API also can listen for Racer’s TCP/IP response and bind the

response to Java™ objects. The methods of the API mirror those of the Racer server

except that JRacer invocations can be defined in terms of Java™ syntax and use Java™

typed objects.

JRacer was developed as a part of an ontology visualization project called

RICE16 (Racer Interactive Client Environment), built by Ronald Cornet of the University

of Amsterdam. In creating the JRacer interface, Cornet provides an easy to use, reusable

and documented interface between Racer and Java™ programs.

b. JDBC
Java Database Connectivity (JDBC) is a Java API built into DBMS

systems which allows Java programs to run SQL statements.17 In OAKDA, Java

16 http://www.b1g-systems.com/ronald/rice/
17 ODBC is another well known API and is parallel to JDBC, but it is language-independent.

 127

programs use JDBC to execute the SQL that queries and updates data stored in its MySql

Database RDBMS.

5. Data Tier
The Data Tier is the layer of a Multi-Tier Architecture that stores the application data.

a. MySql Database
MySql18 is a free19 multi-user database server. It is ideal to use a database

server in a Web-based project because several end users may use the site simultaneously.

MySql supports the SQL query language used to query and update data stored in

relational tables. MySql also supports TCP/IP connectivity. Unlike some other popular

database servers, MySql does not support transactional processing or referential integrity

in its tables. The section below describes two of OAKDA’s key database tables,

outlining their structure and functionality.

(1) Indexed OWL-DL Content Table - This table contains an

indexed version of OWL-DL ontology documents loaded into the OAKDA system. The

information contained in the OWL-DL flat file are read, parsed, vetted and processed by

the Racer server and loaded into the MySql index table by Java programs using JDBC

and SQL Data Manipulation Language (DML) statements. Table loading occurs when

the system administrator or an end user of the site wishes to add OWL-DL content to the

OAKDA data store.

Each term contained in the ontology is referenced in a MySql

database table that has the following columns: NODE_TEXT, NODE_TYPE,

NAMESPACE and OWL_FILE. The matrix shown in Table 9 describes the Ontology

Index Table.

18 http://www.mysql.com/
19 General Public License (GNU)

 128

Field Name Data Type Description

NODE_TEXT String The name of the OWL-DL term

NODE_TYPE String Describes the OWL-DL type of the named term

(Class, Property, Individual, Role, etc)

NAMESPACE String The URI of the OWL-DL schema

OWL_FILE String The name of the OWL-DL flat file

DATE_INDEXED Date The date on which the file was loaded into OAKDA

Table 9. Metadata Descriptions for Indexed OWL-DL Content Table

Table 10 shows an example data that would be stored in the

“Indexed OWL-DL Content Table.”

NODE_TEXT NODE_TYPE NAMESPACE OWL_FILE DATE_INDEXED
Person class http://www.owl-ontologies.com/generations.owl generations.owl 20051112
GrandMother class http://www.owl-ontologies.com/generations.owl generations.owl 20051112
GrandParent class http://www.owl-ontologies.com/generations.owl generations.owl 20051112
MaleSex class http://www.owl-ontologies.com/generations.owl generations.owl 20051112
GrandFather class http://www.owl-ontologies.com/generations.owl generations.owl 20051112
Parent class http://www.owl-ontologies.com/generations.owl generations.owl 20051112
Gemma individual http://www.owl-ontologies.com/generations.owl generations.owl 20051112
Peter individual http://www.owl-ontologies.com/generations.owl generations.owl 20051112
Matt individual http://www.owl-ontologies.com/generations.owl generations.owl 20051112

Table 10. Example data for Indexed OWL-DL Content Table

The data in Table 10 is a transformation of the OWL-DL content.

The reason this is done in advance is to enable quick lookups during the term searching

portion of the program. This can be done by Racer but it would be prohibitively slow and

resource intensive if Racer was used to read and perform reasoning of all OWL-DL file

content each time search is requested. It is far less memory and CPU intensive to search

an indexed list since no reasoning is necessary for term search.

(2) Selected Search Term Table – This table stores the items

selected by the end user during terminology discovery which is later applied to the Web

search. Since the applet is running in a separate HTTP session, the user selections and

HTTP session ID must be stored for later retrieval by the application. The following

matrix, in Table 11, shows the description of the Selected Search Term table.

 129

Field Name Data Type Description
SESSION_ID String The name of the HTTP session that launched the

TouchGraph applet.
SELECTED_NODE String The text of the OWL element node
DATE_SELECTED Date The date/time when the item was saved in the table

Table 11. Metadata Descriptions for Selected Search Term Table

b. OWL-DL Ontology File
Web Ontology Files contain the representational data used by OAKDA to

find connected terminology information. In OAKDA, only OWL-DL files are processed

by the RACER engine.

6. OAKDA Client and Server Components
Table 12 delineates, from a physical standpoint, where each component in

OAKDA’s Architecture resides. This is intended to provide a quick summary of the

physical location of each component of the system. The “System Component” column of

the table lists each part of the OAKDA system. The “Client” column is the computer

used by the end user of OAKDA to access the system. The "OAKDA Host” column is

the computer that is the server for the system. The “3rd Party Server” column contains

those computer resources that are leveraged by OAKDA via the Web.

 OAKDA Components
System Component Client OAKDA

Host
3rd Party
Server

Apache Tomcat App Server √
Apache Web Server √
Google √
Google Web Services √ √
HTML / CSS / JavaScript √
Java™ Objects √ √
Java™ Applet √
Java™ Servlet √
OWL-DL Ontology File √
Racer Server √
TouchGraph √
Web Browser √
MySql Database √

Table 12. OAKDA Component Physical Location Matrix

 130

D. OAKDA PROTOTYPE PROCESS FLOW
In the previous section, the components of OAKDA were introduced individually.

This section explains how OAKDA components interact and details the sequence of the

interaction. The diagram in Figure 78 provides a synopsis of all the communication

pathways of OAKDA. The diagram is divided into three sections to indicate network

boundaries: the Server Side, where the OAKDA system is hosted, the Client Side, where

the client computer and the end user of OAKDA reside, and the Internet, where Google™

web services are located. All interactions traversing these boundaries are TCP/IP based

network messages. There are three different modes of communication between the

software and hardware system components: TCP/IP, direct program calls between Java™

programs, and System I/O20 and disk I/O21.

Figure 78. OAKDA Component Messaging Pathways

20 These are standard input and output from the client computer, such as video, mouse clicks and
keystrokes.

21 For Racer's read of the OWL-DL files.

 131

1. Anatomy of an OAKDA Search
In order to illustrate the complete workings of OAKDA, shown in Figure 1, this

section describes a typical OAKDA usage scenario. This description touches upon all the

components shown in Figure 78 and provides an overview of all interactions and

processes underlying the system.

Firstly, it is assumed OAKDA will be used to refine Web search or to discover

knowledge about a domain. We will suppose a user exists who has a search topic of

interest in cartoons and an initial search term: "Jerry." The user launches the OAKDA

home page to begin the process. Figure 79 shows that this HTTP requests/response

communications is initiated with the Apache Tomcat Web server. The home page is

composed of static HTML content. Figure 80 shows the OAKDA home page.

Figure 79. OAKDA Client / Web Server Interaction

 132

Figure 80. OAKDA Home Page

Next, the user enters the search term, “Jerry”, into the client side HTML form and

presses the submit button. This action generates a HTTP request containing the search

term as an argument to the Web server which is then dispatched to the Tomcat

application server. Tomcat instantiates a program event that is handled by a specific Java

servlet. The event invokes a Java program to create a SQL string, with search term

“Jerry” incorporated, to query the MySql Database. Messages between Java and MySql

are accomplished via the JDBC API. The database table queried contains records of

indexed ontology content. The query returns the list of ontologies where the search term

is found. The query results are passed back to the Java servlets where they are ranked by

match closeness, incorporated into a HTML document and sent to the client via HTTP by

the Web server. In this case, the term “Jerry” was found in the OAKDA database in an

ontology called “Cartoon Star”. This interaction is depicted below in Figure 81.

 133

Figure 81. Client interaction with OAKDA Database

At this point the client presentation is showing a ranked list of found ontology

content and a links to the source OWL-DL files where each match was found. The user

selects the “Cartoon Star” ontology by pressing a button next to each result row. This

action sends HTTP messages to Tomcat which are dispatched to Java servlets that create

an HTML document to be sent as a response back to the client browser. HTML

<APPLET> tags in the response direct the browser to download and instantiate a Java

applet running on the browser’s Java Virtual Machine22 (JVM). The Applet is used to

render OWL-DL data in the form of a directed graph for the user interface using

TouchGraph software. The first action the applet does is to send an HTTP request

message to the Web server which in turn accesses Racer via the JRacer middleware.

Racer is instructed to read the “cartoon_star.owl” file and query it for all nodes directly

associated to “Jerry.” Description logics based reasoning executes as the ontology is

22 A component of the Java platform which executes Java Bytecode.

 134

instantiated in Racer’s memory. [See appendices 1, 2 for sample code] A list describing

all ontology information connected to “Jerry” is passed back to the Java Servlet which

instantiates a Java bean object to be used as a container for this information. The Java

bean is serialized23 and sent, via the Web server, back to the client applet as HTTP data.

The Applet then un-serializes the data back into a Java bean object. This object is passed

to the TouchGraph program and used to render the nodes and edges of the directed graph

depicting the OWL-DL ontology on the end user’s client presentation. This chain of

communications is shown in Figure 82.

Figure 82. Client Applet Interaction with Racer Server

23 Serialization is the process of saving an object onto a storage medium in order to later be able to re-

create an object that is identical in its internal state to the original.

 135

Figure 83. Graphical Visualization of the Cartoon Star Ontology

The client interface is now displaying a directed graph showing all the ontology

nodes connected to “Jerry” in the Cartoon Star ontology (Figure 83). Some of the data in

the display shows that “Jerry” is an Individual node instantiated from the

“Disney_Mouse” class and that it is related to another individual named “Tom” through

the “In_Same_Cartoon_Series” property. The user initiates an event to re-orient the

graph around another node. By right clicking the individual, “Tom”, and selecting the

“orient about node” option, the applet sends an HTTP message to the Web server that in

turn dispatches an event to a Java servlet which, via JRacer middleware, queries Racer

for all the OWL-DL data directly related to the “Tom” node. The data is incorporated

into a Java bean, serialized and sent back to the client applet. The applet then re-displays

a new directed graph centered on the individual, “Tom.” Some of the changes to the

screen now show that “Tom” was instantiated from the “Disney_Cat” class, but the

“Jerry” node is still present since it is related to “Tom” by the

 136

“In_Same_Cartoon_Series” property. The components used for this event sequence are

represented in Figure 83.

When the end user discovers the terms needed for the Web search in the displayed

graph, the term is selected by right clicking on the node and choosing the “add as search

term” option on the “Tom”, “Jerry” and “Disney_Cat” nodes. This event causes the

applet to send an HTTP message to the Web server dispatching a Java servlet to create a

SQL “insert” statement containing the selected ontology values along with the session ID

of the current HTTP session. The session ID is later used to retrieve the entire set of user

selected search terms that are stored during that session. The servlet executes the SQL

statement using JDBC API in the MySql database. The end result is a record added to a

database table used to store user selected search terms. These component interactions are

shown in Figure 84.

Figure 84. Interaction between Client Applet and Database

 137

When the user has chosen search terms and pressed the button labeled “Search the

Web” on the applet presentation view, an HTTP request is sent to the Web server which

dispatches a servlet to create a SQL statement that accesses all the stored search terms

chosen during the current Web server session. The servlet executes the query, retrieving

“Tom”, “Jerry” and “Disney Mouse” from the database. This data is incorporated into an

HTML document that is sent back to the client browser for display. The applet running

in the browser’s JVM is terminated. The presentation now consists of the list of selected

search terms in an HTML form designed to allow the end user to edit or modify the

content. This action uses OAKDA components shown in Figure 81.

The user is now ready to initiate the Web search. By pressing the “Submit

Query” button on the client presentation, HTTP messages are sent to the Web server

which dispatches a Java servlet to incorporate the message data into a SOAP envelope

destined for Google’s Web Services portal. The Web server routes the SOAP message

request and receives Google’s SOAP HTTP response. Contained in the response is the

listing of Web search hits that Google found in its database. This information is

integrated into an HTML document and sent back to the client browser by HTTP. This

interaction is shown in Figure 85 below. The OAKDA screen shot of the web links

retrieved by Google Web services is depicted in Figure 86.

 138

Figure 85. Client Interaction with Google Web Services

Figure 86. OAKDA Web Search Results

 139

E. OAKDA PROTOTYPE EVENT SEQUENCE AND PROCESS FLOW
This section elaborates on the previous section and provides Sequence diagrams

of the interactions of OAKDA processes when initiated by client generated events. A

sequence diagram is a UML graphical construct used to show the sequence of

interactions between object instances in a software based system. A sequence diagram is

specific, referencing the method name of the function called in the interaction. The

specific type of sequence diagram is a useful tool for a programmer for implementing a

UML specification. For the purposes of this thesis, a more general type of sequence

diagram will be used, called a Service Level Sequence diagram, which shows logic in

detail but does not reference specific program function points. Following the diagrams

and other depictions show a clear picture of the operation of the system.

1. OAKDA UML Sequences

a. Home Page
This section describes the events and programs that launch OAKDA’s

Home Page, the first step taken by the end user of the system. Figure 87 shows the

associated sequence diagram.

Figure 87. Home Page Sequence Diagram

 140

In the starting state for this sequence, the client has not yet invoked

OAKDA. The necessary preconditions are the end user has an Internet connection and

Web browser. The sequence initiates when the end user launches a Web browser and

enters the Web address for OAKDA. The browser sends a HTTP request to the OAKDA

Web server. The Web server deciphers the request and sends the contents of the

Index.html document back to the client as an HTTP response. The browser receives the

response and renders the HTML to show the OAKDA home page on the client Web

browser.

b. Ontology Search
This section describes the system events and programs that are activated

when the end user initiates a search of the indexed OWL-DL content stored in the

OAKDA database. The end result of the action yields a display of the search results in a

ranked list. Figure 88 below shows the associated sequence diagram.

Figure 88. Ontology Search Sequence Diagram

In the starting state, the OAKDA home page is displayed. The home page

consists of a form used to search the indexed OWL-DL content. There are no other

 141

necessary preconditions. The process initiates when the end user enters search terms into

the form and clicks the submit button.

Next, Tomcat Server receives a HTTP request and dispatches a call to a

Java Program to compile and execute a SQL query against the data in the

OWL_NODE_INDEX table in the MySql database. The query looks for partial or full

string matches. For each record in the result set of the query, a score is computed that is

later used to rank the closeness of the match with other rows. The data from the search is

sorted by rank and formatted into the HTML content on the Search Results Page

displayed on the client browser.

c. Ontology Search Results Page
This section describes the events and programs that construct the applet

interface used for ontology navigation and terminology discovery when an OWL-DL file

is selected. Figure 89 shows the associated sequence diagram.

Figure 89. Ontology Search Results Page Sequence Diagram

 142

In the starting state for this sequence, the Ontology Search Results Page is

displayed. The page shows a sorted list of ontology nodes resulting from the Ontology

Search Page. The list of the matched content from the search is ranked by the closeness

of the match. The columns in the table are:

a. Score – A real number between 0 and 1 that describes the closeness of the
match. This list is sorted in ascending order.

b. Element Name – The OWL-DL element name of the node in OWL-DL
content.

c. Type – The element’s OWL-DL type can consist of a CLASS,
PROPERTY or INDIVIDUAL.

d. File – The name of the OWL-DL file where the element name was found.

The sequence starts when the user selects one of the buttons adjacent to a

list item. At the end of the sequence the user is presented with graphical rendering of the

ontology data in the form of a directed graph showing all nodes closely linked to the

selected search term.

First, the element name, OWL-DL type, and OWL-DL file are passed as

HTTP arguments to the Tomcat application server. Tomcat calls a servlet that builds an

HTML response containing a <APPLET> tag reference to a Java™ program with the

HTTP session ID and the OWL-DL arguments embedded in the page. The HTTP

response is sent back to the client side browser. In rendering the HTML, the client

browser is instructed to download the Java™ applet code from the Web server. The

applet establishes a second HTTP session, sending the OWL-DL arguments to the

application server.

Tomcat receives this message and responds by invoking a Java program

that uses the JRacer API to communicate with the Racer server. The OWL-DL element

names are used as arguments in the invocation. The first action performed is to check if

the referenced OWL-DL file has already been loaded in the Racer server’s memory. If it

is not, a call is made requesting Racer to read the OWL-DL file. Racer’s internal

programs cause it to load, parse and execute description reasoning algorithms.

After the program returns a message that the Racer has successfully

loaded the OWL-DL markup file, the servlet program performs a series of calls designed

 143

to query Racer for elements directly related to the OWL-DL element name in the query

statement. There are three types of queries that can be made. These are differentiated by

their element type which can be one of the following: CLASS, PROPERTY, or

INDIVIDUAL. This is shown in Figure 90, 91 and 92, respectively.

Figure 90. OWL Elements Directly Related to CLASS Type

When the OWL-DL argument of the query is a CLASS type, as in Figure

90, the servlet will query Racer for parent classes, sibling classes, child classes and direct

instances. The query element “Class” is the central element of the graph. Arrows

showing the inheritance relationship by their direction, link related elements. These

queries only vary by the OWL-DL “type” of the argument.

Figure 91. OWL Elements Directly Related to INDIVIDUAL Type

 144

Figure 92. OWL Elements Directly Related to PROPERTY Type

Figure 91 and 92 depict the elements directly related to queries on the

OWL-DL INDIVIDUAL and PROPERTY type, respectively. The query output is

arranged into list that captures the pair wise relations of the element names. This list is

contained in a Java™ bean24 object and serialized25 to “freeze” the object in its current

state.

Tomcat routs the serialized output back to the client applet via HTTP. The

client applet reconstitutes the data into a Java™ bean with the same state it had on the

server side. The bean is passed as an argument into TouchGraph program methods that

render a graphical representation of the relation pairs in the user interface. The element

names become the labeled nodes in the two-dimensional graph and the inheritance

relationship of the related nodes determines the arrow direction of the edge that connects

them. The user interface displayed at this point is used for ontology exploration and

selection of node names for a later Web search.

d. Ontology Exploration Applet GUI

This section describes the events and programs that enable the end user to

traverse an ontology displayed by the TouchGraph Applet. When the user selects a new

node as the focal point of the ontology, the graph reorients about that node. Figure 93

shows the associated sequence diagram.

24 A Java Bean is simple Java Class that has “set” and “get” methods for each of its properties.
25 “Flattening” a Java object into a persistent format such as a file or stream object.

 145

Figure 93. Ontology Exploration Function Sequence Diagram

The starting state is for the applet to display a portion of the ontology in

the TouchGraph applet interface. When the user double-clicks on a given node, or right-

clicks on a node and selects “orient about node”, the applet will redisplay with the

selected node as the focal point of the graph.

When the listener in the TouchGraph applet detects the mouse event, it

responds by sending a HTTP message to Apache/Tomcat server. The message has HTTP

parameters which specify the element name selected, the element type, and the OWL-DL

file to which it belongs. Tomcat detects the messages and invokes Java™ programs

using the JRacer API to communicate with the Racer server. The program creates

TCP/IP calls to query the Racer server for all OWL-DL elements related to the new node.

Just like in the section above, the information is passed down to the client applet and

redisplayed on the user interface.

e. Ontology Node Selection
This section describes the events and programs that enable the end user to

select a term from the displayed ontology to be used for Internet search. Figure 94 shows

the associated sequence diagram.

 146

Figure 94. Ontology Node Selection for Search Sequence Diagram

In the starting state, the TouchGraph applet is displaying on the client

GUI. There are no other preconditions for this sequence. The initiating action starts

when a user right-clicks on a node and selects “add as search term.” At the ending state,

the selected term is stored in the OAKDA database with a reference to the HTTP session

ID of the HTTP session that launched the applet and the TouchGraph applet displays the

terms in a list box.

When a listener on the client side applet detects the mouse event, HTTP

messages are sent to the Tomcat server. Tomcat then dispatches Java™ programs which

invoke a SQL INSERT statement via JDBC to the MySql database server. The SQL

statement directs the database to store the selected term and its HTTP session ID to the

SELECTED_SEARCH_TERM database table.

f. Search Pre-Processing Page
This section describes the events and programs that construct the Web

page which enables the end user to “fine tune” the Internet search query. Figure 95

shows the associated sequence diagram.

 147

Figure 95. Web Search Pre-Processing Page Sequence Diagram

In the starting state, the OAKDA screen shows the Ontology Exploration

GUI. There is a necessary precondition that search terms related to the current HTTP

session are stored in the MySql database. The initiating action for this sequence occurs

when the end user clicks on the “Search the Web” button on the Ontology Exploration

page. The ending state shows the user a Web page displaying the search terms in editable

text boxes with radio button options by each term that enable the user to further configure

the syntax of the Internet search.

After the “Search the Web Button” is pressed, an HTTP request is sent to

the Tomcat server which invokes a Java™ program to fetch records stored in the database

SELECTED_SEARCH_TERMS table. The SQL statement uses the HTTP session ID as

the key to find the records connected to the session of current OAKDA user. Some post

processing takes place to reformat the list of terms for the Web search. Since the terms

are often concatenated together either with ‘_’ characters or by upper/lower case

transition, programs are invoked to parse the strings from their OWL-DL format into

their component words and convert them to upper case text. The namespace information

 148

on each OWL-DL element is discarded. Table 13 lists examples of typical

transformations.

Typical OWL-DL format Web Search Format
|http://abc.org/owl#Animated_cartoon| ANIMATED CARTOON
|http://xyz.net/owl#HooverVacuumCleaner| HOOVER VACUUM CLEANER

Table 13. OWL Element Transformations

This list of search terms is incorporated into the HTML page and sent back to the Tomcat

server to be returned to the client browser as an HTTP response.

The displayed page is used to further configure the search terms for the

Internet query. The form has button controls used for configuring the search with syntax

used for the Google™ Web portal. The HTML form for this page has editable text

boxes, radio buttons, and a submit button. The text box contains the search terms

selected by the user during ontology exploration. These terms may be edited by the user

to change the word or correct their spelling. The radio buttons are used to control the

way the terms are used in the Web search. They enable the user to choose one and only

one of several options. The “AND” radio button choice is the default selection and

represents a Boolean “AND” for the search. The “OR” radio button implies that the

search will apply logically “OR” the term with any other term that has the “OR” option

selected. The “NOT” selection formats the Web search query to find Web pages that do

not contain the term. The “REMOVE” option ignores the search term so that it will not

be incorporated into Web search at all.

 149

This search will look for pages that have the string apple in the content
but not COMPUTER
SEARCH TERM AND OR NOT REMOVE
APPLE
COMPUTER

Figure 96. Example Logical “AND” Search Syntax

This Search will look for pages that have either APPLE or ORANGE but
do not contain COMPUTER
SEARCH TERM AND OR NOT REMOVE
APPLE
ORANGE
COMPUTER

Figure 97. Example Logical “OR” Search Syntax

This search will look for pages that contain APPLE or PEAR. The term:
ARTILERY is ignored and is not present in the Web search
SEARCH TERM AND OR NOT REMOVE
APPLE
PEAR
ARTILERY

Figure 98. Example of Logical “OR” and REMOVE Search Syntax

Figures 96, 97 and 98 above show examples to of how the search

configuration form assists the end user to configure discovered content into a Web search

query. Figure 96 shows an example using a logical AND & NOT to retrieve web pages

that contain “apple” but not “computer.” Figure 97 is similar to 96, except the documents

retrieved should have either “orange” or “apple” found in the content but not “computer.”

In Figure 98, the selection of the REMOVE option nullifies the inclusion of the content

into the query. This means the pages retrieved will have “apple” or “pear” in the content

but the “artillery” string will have no bearing on the search. The form configuration is

used as input to be translated into search syntax used in the Google Web services

interface.

 150

g. Google Web Search Page
This section describes the events and programs that create the Web page

showing the Internet search links from the Google Web portal. Figure 99 shows the

associated sequence diagram.

Figure 99. Google Search Page Sequence Diagram

In the starting state, OAKDA’s client is displaying the Search Pre

Processing Page. The action that initiates the process is when the user presses the

“Search the Web” button on the Search Pre-Processing page. The ending state for this

action displays an HTML page showing links to Web pages from Google™ Web

Services that meet the criteria of the Internet search query.

After the initiating action, the client browser sends an HTTP request

containing the Web search query in the Web form to the Apache/Tomcat server, which

invokes the appropriate Java™ program for the next processing step. The program then

constructs a Web services SOAP XML “envelope” to be sent the Google™ Web Services

API using the HTTP protocol. Included in the envelope call are the formatted Web

search parameter string and a registration key required for Google™ authentication. The

 151

Web service sends back a SOAP response via HTTP that is dispatched by

Apache/Tomcat server to programs which unwraps its contents. The data contained in

the response is the very similar to content displayed in a typical Google™ Web site

search. This data is incorporated into the HTML by the server side Java™ programs. An

HTTP response containing the HTML document is sent back to the client Web browser.

The view on the client is similar to a Google search result page. The user can access

HTML anchors to visit the Web content found by the Google™ search.

F. CONCLUSION
The most significant aspects of the OAKDA are the Multi-Tier architecture,

description logics reasoning services, and GUI visualization service that enables directed

graph representation of the ontology. The bulk of effort and research for the

development of OAKDA was spent in these areas. These three contributions to OAKDA

are discussed in detail below.

1. Multi-Tier Architecture
The Multi-Tier architecture enabled an effective prototyping methodology to be

employed in the development of each system component. As new methods and 3rd party

software were evaluated, adopted or discarded, the Multi-Tier framework kept

dependencies from effecting adjacent components. The architecture allowed extensive

re-use of mature tiers through development iterations without the need for modification.

This enabled tier integration and reintegration to be far less complicated then it could

have been under a different architecture. Whenever there was a failure to separate tiers

with a loosely coupled messaging framework, a penalty was paid in code re-writes when

changes had to be accommodated.

The level of development effort to bring OAKDA to completion required almost

10,000 lines of Java™ code in 50 class files. Java™ should be mentioned as significant

aspect of the architecture. Java™ was the cement used to integrate OAKDA’s many

components and was used to implement all business logic. Java’s™ language support for

networking (TCP/IP), useful utilities such as object serialization, and its ability to run on

multiple platforms, enabled key design choices to succeed.

 152

2 Racer
When development of OAKDA project first stated, the Jena API was evaluated as

a possible middleware choice for the OWL-DL processing. The main reasons for interest

in Jena were that the API was written in Java™ which was to be the language of choice

for OAKDA’s other components. After some effort to learn the API, it was found that

Jena could parse and query OWL-DL effectively, but its reasoning services were difficult

to discern. Jena documentation pointed to a capability for interfacing with 3rd party

inference tools but the mechanisms for doing this were not readily understandable. At

the time, Racer was being used as an add-in to the Protégé application to assist ontology

development. Racer provided services to assist the developer to identify conflicts within

an ontology and was used by Protégé to rearrange taxonomy structure to a more suitable

form. It appeared that Racer could parse, query and reason with OWL-DL and the only

obstacle to utilizing it in OAKDA was to find a method to incorporate it into the

architecture. Racer’s TCP/IP based interface allowed the software to work with any

programming languages capable of forming and sending TCP/IP messages. Racer’s

native messaging framework uses a Lisp style syntax to query or publish to the Racer

server. Fortunately, a small Java™ based interface for Racer was already developed,

called JRacer, which abstracted TCP/IP communications and Racer’s Lisp style syntax

into Java function calls. Racer is server based software, which lends itself well to the

Web server based architecture of OAKDA, since both Racer and the Web server need to

handle simultaneous connections. After this discovery, Racer was selected as a

component of the project design and the Jena API was abandoned. The incorporation of

Racer and JRacer greatly accelerated the development of the system.

Racer had a certain drawbacks that may not be present with other inferencing

middleware. For example, Racer has no straightforward method to query the property

restrictions in class definitions. In OAKDA’s visualization component, it may have been

useful to show, along with the class name, the restriction statement that defines the

attributes an individual must possess to be a member of the class. Instead, OAKDA only

shows these restrictions when class instantiations, or individuals, are selected because the

property restrictions are manifested as links between individuals. The effect of this on

 153

the OAKDA system is that any OWL KB’s without individuals do not reveal property

restrictions and tend to appear as simple taxonomies. This seems to be a feature of

Racer’s description logic model. While restrictions can be published when a class is

defined, it is difficult to query that information from the schema representation inside

Racer’s memory. The asserted content represented is easier to access. As a result, only

in asserted content, are the class properties able to be expressed.

3. Visualization
It is difficult to visually decipher the patterns and meaning of large matrix of data

without creating some type of representational image. Graphing techniques exist to help

comprehend the meaning in a collection of data. OAKDA’s usefulness to the end user

greatly depended upon providing an effective visualization framework to amplify human

cognition and navigation support of OWL-DL data.

OWL-DL’s topology is best described as a directed graph to represent complex

inheritance, and property relationships between the RDF resource nodes. In OAKDA’s

development, approaches using HTML/CSS did not yield good results because this

format provided no easy means to mirror the topology of the OWL-DL documents.

TouchGraph software is designed to represent directed graphs and thus readily able to

depict OWL-DL. TouchGraph’s capability to self-organize to fit the available screen

space ensured the data was distributed evenly on the viewing area and did not obscure the

content even when it was densely populated. TouchGraph necessitated the development

of Applets running on the client browser which could communicate with the Web server.

The system was lacking in organizing the inheritance relationships in a way that

could display directional relationships between nodes in an overarching pattern. Since

the OWL representations of the KB contain cycles and bi-directional inheritance, the

graph cannot be presented as a tree showing all inheritance relationships flowing from the

top of the visualization area to the bottom. Sometimes this results in a complex jumble

that has no clear top or bottom organization. However, this aspect of the visualization

was present in most other techniques considered during the research. This may be due to

the difficulty of visually displaying semantically rich ontology components and their

relationships.

 154

TouchGraph has an additional software development drawback in that it offers no

API or service for importation of data into its system. TouchGraph’s source code needed

to be extensively modified to enable messaging with the OAKDA server, and GUI events

had to be developed to enable navigation between linked parts of the OWL KB. The

level of effort it took implement the modifications used to support OAKDA were not

trivial.

Overall, the vision for OAKDA as a tool for a human end user to search, process

and navigate OWL-DL ontologies was realized. It hoped that this application will be

used as a tool for those interested in experimenting with the ontologies for knowledge

discovery and Web search. For those researching OWL-DL processing technologies, the

OAKDA application may be a useful as a baseline example.

 155

VI. OAKDA VS. GOOGLE COMPARATIVE PERFORMANCE
STUDY

A. INTRODUCTION
This chapter attempts to test and answer the main thesis research question: Can

an ontology-based Web search application increase the effectiveness of Web search

results over existing approaches for those searches that require a deep contextual

knowledge of the domain of interest? This experiment compares the effectiveness of the

results of Web search queries formulated by study participants using the OAKDA

application with those obtained by the same participants using the widely popular Google

search engine. The goal: to determine if OAKDA and the ontologies which it

implements will have a significant positive effect on the precision and relevance of the

web search queries generated by the participants in the experiment.

Effectiveness will primarily be measured along three dimensions: (1) whether the

query retrieves pages containing the pertinent answer for the questions asked, i.e. the

precision of the results; (2) whether the page retrieved is “about” the context that relates

back to the ontology information domain, i.e. the precision of the context; and (3) the

participant’s own subjective rating on how well OAKDA and Google performed in

answering the search tasks.

B. EXPERIMENTAL DESIGN
The experimental design used for the study is described in the following

subsections, namely participants, apparatus, and data collection procedures.

1. Participants

The participants in this study consisted of 10 adults ranging from 25 to 70 years

of age. About half of the subjects are information technology workers or have some

involvement in IT an related profession. The rest are employed in other various fields.

All have, to varying extents, a college education and experience in researching topics on

the Internet.

 156

2. Apparatus
All participants in the study used Microsoft Internet Explorer and a high speed

Internet connection. The OAKDA application was used as the search environment for

the test group (A full description of OAKDA and how it functions can be found in

Chapter 6 of this thesis). The Google Web search portal was used as the only search

environment for the control group.

3. Data Collection Procedures
The data points captured from each study participant were in two main categories:

personal data and experiment data. The personal data included the participant’s name,

age, and profession. For this study, personal data was not considered in the data analysis.

Before conducting the experiment, each subject was trained in the use of OAKDA

with a sample search task. The training covered OAKDA’s user interface functions as

well as recommendations on how to construct search queries. No training was given for

using Google, but many of the same tips given for OAKDA were applicable for

producing effective search results in Google. The participants were assumed to have

extensive experience using Google, or Web search tools like it.

Each subject answered half of the Web query tasks using OAKDA (Test group)

and half using Google (Control group). This method ensured that all participants took

part in both the control and test groups an equal number of times. Each Web query was

more or less equally assigned to the control and test groups26.

For the control group, the study participants were allowed as many as three

attempts to refine their search query. They were permitted a maximum of 5 minutes to

work on each question. During this time, they were allowed to visit the retrieved web

pages to find information that could enhance the subsequent queries. The query term list

from each attempt was captured as a data point.

The test group was also allowed 5 minutes per questions but they were granted

more time if they were experiencing technical problems or needed help with application

26 For the rest of the chapter, the sets of control and test data (which are different depending on the
participant) will be referred to as control and test groups.

 157

functionality. No other type of help was given to the test subjects. OAKDA stored all

submitted queries in a database and only the first three queries for each participant were

used for the study data.

The experimental data captured for each participant were, for both control and test

groups, the search query identifier, the number of the attempt, the Web query text, the

participant’s overall rating of the application performance for all queries, and the

precision scores as calculated by the experimenter. One record was generated for every

Web search query. Table 7.1 shows the data definitions for a recorded observation.

Field Name
Data
Type Description

Subject_Id Integer Unique numeric identifier for person participating
in the study

Group_Type String Identifies data point as being in "TEST" or
"CONTROL" study group

Question_Id Integer Unique numeric identifier for questions posted to
the participant

Attempt_# Integer Search query attempt number (1..3)
Search_Query_String String Actual Google search term list

Answer Score Number

Score between (0..1) equal to the number of the
top 10 web hits generated by the
Search_Query_String that contained the answer
to the search task specified by the Question_id

Context Score Number
Score between (0..1) equal to the number of the
top 10 web hits generated by the
Search_Query_String that contained the correct
context for the search task’s domain

Table 14. Definition of Experiment Data

There were six Web search tasks in the study. The participants were instructed to

provide the information asked for by the task in the form of a web query that retrieves

information as relevant as possible to the task’s target answer. The search tasks assigned

to the participants and the associated ontologies are listed in the table 7.2 below.

 158

Question

 Id Task text Ontology File

1
Formulate a search query that will retrieve information about
the geographic features of a tropical Island Nation off the coast
of the African continent.

Geography.OWL

2
Formulate a Web Search query that retrieves the name of the
actor(s) who voiced the dog character in the cartoon “Dog
Trouble”

Cartoon_star.OWL

3
Formulate a search query which will retrieve web pages
pertaining to at least two French artists who made both
paintings and sculptures in the style of 19th Century Realism.

ArtHistory.owl

4

Formulate a search query which will retrieve web pages
pertaining to a computer programming language that that can
be written in either a "Procedural" or "Object Oriented"
programming paradigm. This language is a derivative of the
language used to develop the UNIX operating system.

Programming
Languges.OWL

5
Formulate a search query which will retrieve web pages
pertaining to an electric guitar that is the signature model of a
famous musician. The musician’s first name begins with “L”
and his career spans from the 1930’s to the present day.

Guitar.OWL

6
Formulate a query that retrieves web pages containing the
name of a type of golf ball commonly used ~150 years before
the introduction of the modern golf ball and the components
materials from which it was manufactured.

Golf.owl

Table 15. Participant Search Tasks

After the participants finished creating Web queries for all the search tasks, they

were asked to rate subjectively the effectiveness of both Google’s and OAKDA’s

searches on a scale between 0 and 10. This data was intended to represent the

participant’s perceived measure of OAKDA’s usefulness compared to Google’s, and

represents the “Participant Rating” score of the experiment data.

Recall performance was not considered for the study since the data analyzed is

“pulled” from a Web search portal, the total set of relevant data on the Web was too large

to be efficiently measured. The precision scores were calculated by checking the

relevance of the top n number of retrieved Web pages from any given query. In general,

the precision was defined as the ratio of the number of relevant hits retrieved to the total

number of examined hits. The statistic was expressed as a percentage. The queries

recorded for each participant were given a rating score in two different analysis

categories.

 159

a. The “Answer Precision” Score
Each query result was rated between 0 and 1 (0..1) for the presence of the

“answer(s)” to the search task in the text of the retrieved web hits. The examination of

the Web pages was accomplished with a Java™ program which downloaded the pages

and used regular expression processing to find the answer text within the page content.

The top 20 Web hits generated by each query were examined. For each query, the

answer precision score was determined by calculating the number of Web sites with the

answer text divided by the total number of examined sites. A score of .75 meant the

answer text was present in 15 out of the top 20 Web pages retrieved by the query.

b. The “Context Precision” Score
Similarly, each of the top ten retrieved Web pages was examined to assess

if they had the correct contextual background pertaining to the search task. For example,

if the search task pertains to the domain of golf equipment, and the retrieved web pages

are about Gutta Percha tree agriculture, then the page was considered to be contextually

incorrect. The determination of whether a given page was contextually accurate was

achieved by a visual analysis. The context precision score was calculated as the ratio of

the number of pages that had the correct context for the search task.

The scores for each query formed the raw data used for the statistical

analysis. As stated earlier, each participant answered half (three) of the search tasks with

Google and the other half with OAKDA. The ten participants in the study produced a

total of 125 Web search queries in answering six Web search tasks (each was allowed up

to three attempts). Therefore, each participant produced, on average, 2.08 queries out of

a possible 3 for each test and control data set. Only the best performing query was kept

for each search task answered, producing 30 total observations for the test group and 30

for the control group. Each participant’s control and test group scores were averaged,

leaving a total of ten observations for each experiment group, or 1 observation per

participant.

This data summary was performed for both the “Answer” and “Context”

data sets, leaving three total data sets for analysis: Participant Rating score, “Answer”

 160

precision score and the “Context” precision score. The next section will describe the type

of statistical analysis used to measure the data and the findings.

C. DATA ANALYSIS PROCEDURES
The methodology followed in the experiment yielded three data sets to be used as

inputs for the statistical analysis. Table 7.3 below depicts the performance scores for the

“Participant Rating,” “Answer Precision,” and “Context Precision” data sets.

 Participant Rating Answer Precision Context Precision

Participant ID Google OAKDA Google OAKDA Google OAKDA
1 0.6 0.7 0.417 0.850 0.600 0.900
2 0.7 0.9 0.833 0.567 0.700 0.800
3 0.7 0.75 0.650 0.900 0.667 0.567
4 0.4 0.6 0.367 0.550 0.400 0.667
5 0.6 0.9 0.583 0.817 0.733 0.733
6 0.65 0.9 0.550 0.833 0.800 0.767
7 0.4 0.8 0.400 0.867 0.633 0.600
8 0.3 0.8 0.383 0.600 0.667 0.833
9 0.7 0.7 0.500 0.833 0.633 0.533

10 0.4 0.8 0.300 0.783 0.433 0.167
Mean score 0.545 0.785 0.498 0.760 0.627 0.657

Table 16. Experiment Data Results

The objective for the analysis of the data sets was to see if there is a significant

difference between score means of the test and control data sets. The method used to test

for significance was the t test dependant means. The t test involves a comparison of

means from two different groups and focuses on the differences between the scores using

the following formula:

1
)(22

−
∑−∑

∑
=

n
DDn

Dt

where,

ΣD is the sum of all differences between groups

ΣD is the sum of all differences squared between groups

n is the number of pairs of observations.

 161

1. t Tests for the “Participant Rating”

This section shows the eight steps used to compute the t test statistic. To reiterate,

the “Participant Rating” scores consist of the participants’ rating scores of the perceived

effectiveness of OAKDA and Google in retrieving relevant Web pages to answer the

search tasks

a. Statement of the Null and Research Hypothesis
The null hypothesis states that there is no difference in the participant

rating between effectiveness score means of Google and the OAKDA searches. The

research hypothesis is that the participants rate the OAKDA searches as more effective

than Google searches. The research hypothesis is a one-tailed, directional research

hypothesis because it posits that the OAKDA score will be higher than the Google score.

The null hypothesis is: OAKDAGoogleH µµ =:0 .

The research hypothesis is: OAKDAGoogle XXH >:1 .

b. Set the Level of Significance or Type I Error Associated with the
Null Hypothesis

The risk of Type I error or level of significance is 0.05.

c. Select the Appropriate Test Statistic
The appropriate test statistic is a t test for dependent means, also known as

the t test for paired samples, since we are dealing with a group of scores for the same

participants.

d. Compute the Obtained Value
The obtained value for t is:

65.4

1
)(22

=

−
∑−∑

∑
=

n
DDn

Dt

e. Determine the Value Needed for the Rejection of the Null
Hypothesis

The degrees of freedom are n –1 or 9. Using this value and appropriate t-

value tables [Salkind, 2004, 358], the value needed for rejection of the null hypothesis at

the 0.05 significance level is 1.833.

 162

f. Compare the Obtained Value to the Critical Value

The obtained t value is 4.65, larger than the critical value of 1.833 needed

for rejection of the null hypothesis.

g. Decision Time
Since the obtained value is greater than the critical value, the null

hypothesis is rejected. This indicates that users rate the effectiveness of OAKDA

searches as, indeed, higher than that of a Google search for the experiment query set.

2. t Test for the “Answer Precision”
This section shows the eight steps used to compute the t test statistic. To reiterate,

the “Answer Precision” data set consists of the precision scores of retrieved web pages,

measured by the number of sites containing the answer text of the search task.

a. Statement of the Null and Research Hypothesis
The null hypothesis states that there is no difference between the answer

precision scores of Google as compared with OAKDA. The research hypothesis is that

OAKDA search results contain the “answer” to the research task more frequently than

Google searches. The research hypothesis is a one-tailed, directional research hypothesis

because it posits that the OAKDA precision will be higher than Google.

The null hypothesis is: OAKDAGoogleH µµ =:0 .

The research hypothesis is: OAKDAGoogle XXH >:1 .

b. Set the Level of Significance or Type I Error Associated with the
Null Hypothesis

The risk of Type I error or level of significance is 0.05.

c. Select the Appropriate Test Statistic
The appropriate test statistic is a t test for dependent means, also known as

the t test for paired samples, since we are dealing with a group of scores for the same

participants.

d. Compute the Obtained Value

The obtained value for t is:

 163

3.86

1
)(22

=

−
∑−∑

∑
=

n
DDn

Dt

e. Determine the Value Needed for the Rejection of the Null
Hypothesis

The degrees of freedom are n –1 or 9. Using this value and appropriate t-

value tables, the value needed for rejection of the null hypothesis at the 0.05 significance

level is 1.833.

f. Compare the Obtained Value to the Critical Value
The obtained t-value is 3.86, larger than the critical value of 1.833 needed

for rejection of the null hypothesis.

g. Decision Time
Since the obtained value is greater than the critical value, the null

hypothesis is rejected; indicating that according to the measure of retrieved Web pages

containing the search task answer, the precision of OAKDA is higher than Google results

for the experiment query set.

3. t Test for the “Context Precision”

This section shows the eight steps used to compute the t test statistic. To reiterate,

the “Context Precision” data set consists of the precision scores of retrieved web pages,

measured by sites containing the correct context of Web page content pertinent to the

search task.

a. Statement of the Null and Research Hypothesis

The null hypothesis states that there is no difference between the

“Context” precision scores derived from Google as compared with OAKDA. The

research hypothesis is that OAKDA search results contain the correct research task

context more often than Google searches. The research hypothesis is a one-tailed,

directional research hypothesis because it posits that the OAKDA score will be higher

than the Google score.

The null hypothesis is: OAKDAGoogleH µµ =:0 .

The research hypothesis is: OAKDAGoogle XXH >:1 .

 164

b. Set the Level of Significance or Type I Error Associated with the
Null Hypothesis

The risk of Type I error or level of significance is 0.05.

c. Select the Appropriate Test Statistic
The appropriate test statistic is a t test for dependent means, also known as

the t test for paired samples, since we are dealing with a group of scores for the same

participants.

d. Compute the Obtained Value
The obtained value for t is:

0.54

1
)(22

=

−
∑−∑

∑
=

n
DDn

Dt

e. Determine the Value Needed for the Rejection of the Null
Hypothesis

The degrees of freedom are n –1 or 9. Using this value and appropriate t-

value tables, the value needed for rejection of the null hypothesis at the 0.05 significance

level is 1.833.

f. Compare the Obtained Value to the Critical Value
The obtained value is 0.54, smaller than the critical value of 1.833 needed

for rejection of the null hypothesis.

g. Decision Time
Since the obtained value is less than the critical value, the null hypothesis

is upheld, indicating that the effectiveness of OAKDA was not shown to be higher than

Google results for the experiment query set.

D. DISCUSSION

The strongest performance indicator favoring OAKDA over Google was the

participants own subjective rating. This may be due to test group participants feeling that

they had more confirmation of the answer’s correctness. Since the ontologies visually

show relationships between domain concepts, the participants got affirmation more

 165

quickly compared to reading through the prose contained in Web pages and “snippets”

retrieved by Google.

The “Answer Precision” scores show OAKDA users performing better than those

using Google as far as retrieving the answer text to the search question. They do not

however capture the confidence level of whether the user actually believed they found the

correct answer. Several query results with a high precision score surprisingly did not

contain the answer text in the formulated search term list. Rather, by using the closely

related, but not necessarily correct, terms in the web query, the search retrieved highly

relevant hits. This result indicates that using the domain concepts which are closely

related to the sought after term is a good method of formulating a Web search query. In

this study it was not known how many of these high performing queries were

serendipitous.

The “Context Precision” data shows that OAKDA did not deliver a performance

advantage over the Google users. This result is not surprising since the keywords in the

text of the search tasks contained broad contextual information about the knowledge

domain. This was a conscious design choice to help the participants easily locate the

appropriate ontology for the search task. The contextual information given away in the

search task allowed the Google group to create queries that performed as well as the

OAKDA generated queries in terms of contextual accuracy.

This results of the study demonstrate that an ontology assisted search application

does indeed increase the effectiveness of the obtained results for those queries that

require a deep domain knowledge, and provided that: (1) the search task’s domain

correlates strongly with an existing and available ontology and (2) the information the

researcher starts with is sufficient to retrieve the helping ontology but is insufficient to

retrieve the sought after answer.

In the study, every effort was made to craft search tasks that comply with the

prerequisite conditions stated above. First, search tasks were complex enough so as to

not “give away” important information that would enable an easy path to the answer via a

standard Web search. Rather, the information contained in the search task was separated

 166

by at least two degrees from the target answer. As an example, consider the following

query: “Find the name of the brother of Charlie Brown’s Psychoanalyst”. Using the

Peanuts cartoon domain, the answer, “Linus”, is two degrees away from “Charlie

Brown”, who is the brother of Lucy, who in turn is Charlie Brown’s psychoanalyst. This

is an example of a query that requires somewhat deep domain knowledge. Second, the

test users were presumed to have an advantage as long as they managed to locate the

ontology correctly mapped to the search task. Having done this successfully, they only

needed to traverse the graph nodes from a starting point in the ontology to those nodes

pointing to the answer. Correctly interpreting the meaning of search task and ontology

concepts was also necessary for success. There were no instances where the test group

had difficulty finding and selecting the appropriate ontology amongst pool of available

OWL ontologies. If they had not, the retrieval precision scores would have been lower

and much more uneven among the among the control group observations.

It is important to note, that some aspects of the study did create experimental

noise in the data. The knowledge domains represented in ontologies could have been

well known to some of the participants. The group scores might have had greater

contrast if those participants selected had little or no knowledge in the domains selected

for the search tasks. Also, while every participant answered an equal number of

questions from test and control a group, not every question was visited an equal number

of times. It is possible that this caused some skewing of the results. Furthermore,

participant performance varied based on how closely they read and understood the search

tasks as well as their skill at using and comprehending the OAKDA user interface.

Taken together, the significant means of the Rating scores and Answer precision

imply that an ontology assisted search application can make a positive contribution to a

researcher’s search effectiveness.

 167

VII. SUMMARY, CONCLUSIONS AND LESSONS LEARNED

A. SUMMARY

 The stated goal of this thesis was to build an ontology-based Web application to

assist in domain knowledge discovery and improve Web search query by narrowing the

scope of the returned list of results. To this end, the primary research question was, Can

an ontology-based application be built to narrow, expand, or refine Web search terms?

In addition, several secondary research questions follow:

1. What is an appropriate approach for accessing and processing of contextual
information of an OWL knowledge base?

2. What is the most appropriate architecture for the prototype application?
3. How can an ontology inference engine interface with the application?
4. Is there a method of visually rendering the ontologies for greater usability,

navigation and comprehension of domain knowledge?

This thesis addressed these questions using a two-step methodology. The first step was

to research and make a case for the value of ontologies as a knowledge representation

system that models the real world domain into classes, instances and the relationships

between them. A thorough review of RDF and OWL provided the mechanism for

understanding OWL-DL semantics and how they can be used to define the components

of an ontology. It was necessary to fully comprehend the OWL constructs in order to

overcome the common mistakes and pitfalls of ontology development. As part of the

ontology development process, a methodology for developing OWL-DL ontologies was

proposed and demonstrated by the construction of a sample ontology in the geography

domain.

 The second step was to design, develop and test an ontology-based Web

application, called OAKDA, to allow users to search the ontology library and traverse the

ontology graph to discover domain knowledge for finding relevant Web search terms.

When OAKDA was completed, an experiment was conducted to test whether the system

could improve the precision of Web search compared to using standard Web portal

searching sites.

 168

B. EVALUATION
 The first major milestone of this thesis was the development of the sample

ontologies. A significant effort was spent understanding the use of ontologies and

learning RDF and OWL semantics. This knowledge was instrumental in proposing a

development methodology that enabled the construction of a valid geography domain

ontology. The final ontology was verified with Racer, an ontology inferencing engine,

eliminating classification errors and inconsistencies. The learned development methods

were later used to create the ontologies used to conduct experiments to measure

OAKDA’s performance in aiding Web search.

 The second milestone was the overall design and execution of the OAKDA

application. Bringing OAKDA from conceptualization to implementation involved

finding workable solutions for key data processing areas, namely Description Logics

reasoning, ontology query, and an intuitive GUI visualization framework to facilitate

human interaction with the application. The selection of a multi-tier architecture

contributed significantly to the success of the development effort. It enabled an effective

prototyping methodology used throughout the development cycle of the application. It

encouraged re-use of tier components as changes were made. The choice of Racer

middleware was well suited as a platform for reasoning and querying of OWL-DL

ontologies. Racer performed well as an ontology inferencing engine and provisioned an

extensive language for query. Racer’s reasoning service was capable of calculating

implicit role relationships, reclassifying individuals based on their property restrictions,

and correctly determined subsumption relationships between classes. Implementing

TouchGraph software for visualization and navigation for OAKDA’s GUI interface made

an important contribution its usability from a user perspective.

The outcome of experiments conducted to test search performance between

groups of people using OAKDA compared with Google showed that ontology aided

search can confer an advantage. A performance comparison of OAKDA and Google

showed a statistically significant and positive difference in the test group (OAKDA)

results when performing certain research tasks. While the results showed the overall

 169

contextual accuracy of retrieved web pages between the test and control groups were not

significantly different, the test group performed better in retrieving the specific target

information requested by the research task. Also, the participant survey showed that the

test group rated OAKDA as more effective than Google. This implies that OAKDA

users received more confirmation, or had a greater level of confidence, that they

discovered the data they were tasked to retrieve.

It seems that OAKDA’s effectiveness in Web research depends upon two factors

– “aboutness”27 and “availability” of the ontology information in its database. First, the

degree of the ontology's aboutness to the domain of interest determines the relevancy of

the knowledge found in the ontology. Terms with a high degree of aboutness do a better

job of retrieving the body of information they reference. Although measuring aboutness

of retrieved OWL-DL data is not in the scope of this project, an ontology is meant to be

definitional or descriptive of a domain and should be useful in aiding web search as long

as the ontology is not misleading in its content. Second, OAKDA relies on a

presumption that an ontology exists in the users area of interest and that the ontology

contains knowledge the researcher does not yet posses.

C. LESSONS LEARNED
 In completing this thesis, several lessons were learned. The first was the

realization that ontology development is a non trivial endeavor. Developing an ontology

requires domain expert knowledge in addition to a complete understanding of the

ontology language syntax and semantics. Although the level of domain knowledge

required is contingent on the scope and level of detail of the ontology, having an in-depth

knowledge of the domain concepts and their relationships allows the developer to

accurately capture the semantics and relationships between classes. Due to the inherent

level of latitude in representing type/class hierarchy in concept modeling, no two subject-

matter experts (SMEs) will design an ontology of a given domain in an identical manner.

Depending on the domain of context, there is usually a significant degree of subjectivity

27 Aboutness is broadly defined as a degree in which a set of returned resources is “about” a particular
domain of interest. For instance, “if a system determines that a document d is topically related (i.e. about)
to query q, then the document is returned to the user.” (Bruza et al., 2000, 1)

 170

in specifying class definitions and relationships, with no absolute superiority of one

particular schema over another. Also, inconsistencies are easily introduced when

creating a class hierarchy of an ontology. Development tools, such as Protégé and Racer,

help mitigate these errors by providing services to verify the validity and consistency of

the ontology. By performing consistency checks on the ontology at various stages of its

development, it was possible to find and correct classification errors or inconsistencies in

class definitions.

A second lesson was learned during the experiment conducted to measure the

effectiveness of the OAKDA application. The Swoogle28 project, funded by the

University of Maryland, Baltimore, is a vast searchable repository of indexed OWL and

RDF ontologies. Swoogle uses automated Web crawling techniques similar to those

employed by the major Web search portals to find available ontologies out on the Web.

Swoogle differs from other search portals in that it only seeks RDF and OWL Web

content. Swoogle was searched extensively for OWL ontologies to be used for the

experiment, but none found to suitable because of their structural attributes, content or

both. Instead, those ontologies had to be developed by the thesis authors. It may be that

in some circumstances, ontologies need to be structured in particular ways suited to how

they are being used.

D. FUTURE WORK
Currently the OWL database in OAKDA is too limited to provide usability

outside of the bounds of experiment. In order for an application like OAKDA to have

wide popularity as a research tool, there would need to be a repository of appropriately

structured ontology files with an encyclopedic breadth. This scenario is at this time not

likely to come about. OAKDA represents a departure from many other proposed uses of

ontology data in that much previous work has been to try to leverage ontologies to

enhance machine capabilities. OAKDA seeks to enhance the research facility of the

human user. Future efforts that would be able to draw from the technologies exhibited in

OAKDA might be graphical visualizations of ontologies geared to aid navigation to

28 http://swoogle.umbc.edu - The first three letters of Swoogle stand for Semantic Web Ontology
while the rest of the name is meant to refer to a popular Web search portal.

 171

related information recomposed as an ontology. For example, suppose someone

developed an ontology about a library catalog. A web site of the library’s catalog could

show a navigation graph depicting the kinds of relationships between related reference

materials. Another usage might be based on an ontology that describes the relationships

between class files, function points, variables, etc in a grouping of programming code. A

visualization of this ontology could give a team of developers an easy way to navigate the

structure of program and quickly learn its topology. Because of the regularity of

computer programming syntax, the ontology might be able to be regenerated from the

code base as changes are made.

E. CONCLUSIONS

OAKDA was built as project to explore the methodologies for accessing and

processing OWL-DL ontologies in a framework which attempts to leverage domain data

to enhance Web search queries. OAKDA successfully integrated several components

capable of performing these operations. OAKDA’s architecture demonstrates one of a

few possible frameworks for attaining a Semantic Web enabled application. OAKDA

overcame challenges in implementing a system to perform both machine processing and

human interaction with Semantic data. OAKDA demonstrates the feasibility of these

technologies and could serve as a baseline for other types of Semantic Web applications

that require similar functionality.

 The central assertion of Semantic Web is to provide a universal medium for the

exchange of data where data can be shared and processed by automated tools as well as

by people. This thesis showed the value of ontologies as a system for human-processable

knowledge representation. Through applications like OAKDA, that employ OWL-DL

ontologies for semantic processing, communities in every field of interest should be

encouraged to capture their knowledge by developing ontologies. It is our hope that the

research conducted here may suggest future methodologies for the realm of applications

leveraging knowledge representation techniques.

 172

THIS PAGE INTENTIONALLY LEFT BLANK

 173

APPENDIX

A. ACRONYM TABLE

Acronym/Term Description

API Application Programming Interface

BOT Software Robot

CSS Cascading Style Sheets

DBMS Database Management System

DL Description Logics

GUI Graphical User Interface

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IP Internet Protocol

JDBC Java™ Database Connectivity

JRE Java™ Runtime Environment

KB Knowledge Base

OAKDA Ontology Aided Knowledge Discovery Application

ODBC Open Database Connectivity

OWL-DL Web Ontology Language- Description Logics

SOAP Simple Object Access Protocol

SQL Structure Query Language

TCP/IP Transfer Control Protocol / Internet Protocol

UDDI Universal Discovery Description Integration

Wiki A website or similar online resource which allows users

to add and edit content collectively

WSDL Web Service Description Language

XML eXtensible Markup Language

 174

B. JAVA EXAMPLE CODE – “INTERFACING WITH THE RACER
SERVER”

Figure 1: Java code used to execute commands for Racer to read OWL-DL file

 175

Figure 2: Java code used to execute commands for Racer to read OWL-DL file and

perform various queries which retrieve data in Java typed language structures.

 176

THIS PAGE INTENTIONALLY LEFT BLANK

 177

LIST OF REFERENCES

Antoniou, Grigoris and Frank van Harmelen. 2004. A Semantic Web Primer. Cambridge,
MA: The MIT Press.

Baader, Franz, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter Patel-
Schneider. 2003. The Description Logic Handbook: Theory, Implementation, and
Application. Cambridge, UK: Cambridge University Press.

Bechhofer, Sean, Frank van Harmelen, Jim Hendler, Ian Horrocks, Deborah McGuinness,
Peter Patel-Schneider, and Lynn Andrea Stein. 2004. “OWL Web Ontology Language
Reference.” W3C Recommendation, February 2004. Available at
http://www.w3.org/TR/owl-ref/. May 2005.

Beckett, Dave, ed. 2004. “RDF/XML Syntax Specification (Revised).” W3C
Recommendation, February 2004. Available at http://www.w3.org/TR/rdf-syntax-
grammar/. May 2005.

Berners-Lee, Tim, James Hendler, and Ora Lassila. 2001. “The Semantic Web.” The
Scientific American. Available at
[http://www.scientificamerican.com/2001/0501issue/0501berners-lee.html],
August 2005.

Birbeck, Mark, Jon Duckett, Oli Gauti Gudmundsson, Pete Kobak, Evan Lenz, Steve
Livingstone, Daniel Marcus, Stephen Mohr, Jonathan Pinnock, Keith Visco, Andrew
Watt, Kevin Williams, Zoran Zaev, and Nikola Ozu. 2001. Professional XML, 2nd Ed.
Birmingham, UK: Wrox Press Ltd.

Brickley, Dan, and R.V. Guha, eds. 2004. “RDF Vocabulary Description Language 1.0:
RDF Schema.” W3C Recommendation, February 2004. Available at
http://www.w3.org/TR/rdf-schema/. May 2005.

Bruza, Peter, Daiwei Song, and Kam-Fai Wong. 2000. “Aboutness from a Commonsense
Perspective.” Journal of the American Society of Information Science. Available at
http://www.dstc.edu.au/Research/Projects/Infoeco/publications/aboutness-jasis.pdf. May
2006.

Bruza, Peter, Daiwei Song, and Kam-Fai Wong. 1999. “Fundamental Properties of
Aboutness.” In Proceedings of the Twenty-Second Annual International ACM-SIGIR
Conference on Research and Development in Information Retrieval (SIGIR'99),
Berkeley, USA, 1999. Available at
http://www.dstc.edu.au/Research/Projects/Infoeco/publications/aboutness-sigir.pdf. May
2006.

 178

Champin, Pierre-Antoine. 2001. “RDF Tutorial.” Available at http://www710.univ-
lyon1.fr/~champin/rdf-tutorial/rdf-tutorial.html. May 2006.

Chandrasekaran B, John Josephson, and V. Richard Benjamins. 1999. “What are
ontologies and why do we need them?” IEEE Intelligent Systems. 1999;14(1):20-26.
Available at
http://www.infofusion.buffalo.edu/conferences_and_workshops/ontology_wkshop_2/ont
_ws2_working_materials/ChandrasekaranRoleofOntology.pdf. May 2006.

Chakrabarti, Soumen. 2003. Mining the Web: Discovering Knowledge from Hypertext
Data. San Francisco, CA: Morgan Kaufmann Publishers.

Chopra, Vivek, Ben Galbraith, Sing Li, Chanoch Wiggers, Amit Bakore, Debashish
Bhattacharjee, Sandip Bhattacharya, Chad Fowler, and Romin Irani. 2003. Professional
Apache Tomcat. Indianapolis, IN: Wiley Publishing, Inc.

Costello, Roger, and David Jacobs. 2003. “Inferring and Discovering Relationships using
RDF Schemas.” Tutorial by the MITRE Corporation. Available at
http://www.ics.forth.gr/isl/swprimer/presentations/rdfs.ppt. May 2006.

Daconta, Michael, Leo Obrst, and Kevin Smith. 2003. The Semantic Web: A Guide to the
Future of XML, Web Services, and Knowledge Management. Indianapolis, IN: Wiley
Publishing, Inc.

Dameron, Oliver, Daniel Rubin, and Mark Musen. 2005. “Challenges in Converting
Frame-Based Ontology into OWL: the Foundational Model of Anatomy Case-Study.”
AMIA 2005 Symposium Proceedings: 181-185. Available at http://smi-
web.stanford.edu/people/rubin/pubs/037_58813.pdf. May 2006.

Davies, John, Dieter Fensel, and Frank van Harmelen. 2003. Towards the Semantic Web:
Ontology-Driven Knowledge Management. West Sussex, UK: John Wiley & Sons, Ltd.

Decker, Stefan, Prasenjit Mitra, and Sergey Melnik. 2000. “Framework for the Semantic
Web: An RDF Tutorial.” In IEEE Internet Computing, November 2000. Available at
http://dme.uma.pt/jcardoso/Teaching/SemanticWeb/Papers/Framework_for_the_Semanti
c_Web_An_RDF_Tutorial.pdf. May 2006.

Deitel, Harvey, and P.J. Deitel. 1999. JavaTM: How to Program – Covers Java 2
Introducing Swing. Upper Saddle River, NJ: Prentice Hall.

Deitel, Harvey, P.J. Deitel, T.R. Nieto, T.M. Lin, and P. Sadhu. 2001. XML: How to
Program – Featuring JavaTM2, Perl/CGI and Active Server Pages. Upper Saddle River,
NJ: Prentice Hall.

 179

Doyle, Jon, and Ramesh Patil. 1991. “Two Theses of Knowledge Representation.”
Artificial Intelligence, 48(3):261-297. 1991. Available at
http://portal.acm.org/citation.cfm?id=114420&dl=GUIDE&coll=GUIDE. May 2006.

Geroimenko, Vladimir, and Chaomei Chen, eds. 2003. Visualizing the Semantic Web:
XML-based Internet and Information Visualization. London, UK: Springer-Verlag
London, LTD.

Gruber, Thomas. 1993. “A translation approach to portable ontologies.” Knowledge
Acquisition, 5(2):199-220.

Gruber, Thomas. 1991. “The Role of Common Ontology in Achieving Sharable,
Reusable Knowledge Bases.” In Principles of Knowledge Representation and Reasoning:
Proceedings of the Second International Conference, ed. J.A. Allen, R. Fikes, and E.
Sandewall. San Mateo, CA: Morgan Kaufmann.

Gruininger, Michael, and Mark Fox. 1995. “Methodology for the Design and Evaluation
of Ontologies.” In Proceeding of the Workshop on Basic Ontological Issues in
Knowledge Sharing, IJCAI-95. Montreal.

Guarino, Nicola and Pierdaniele Giaretta. 1998. “Ontologies and Knowledge Bases:
Towards a Terminological Clarification.” Available at http://www.loa-
cnr.it/Papers/KBKS95.pdf. May 2006.

Hayes, Patrick, ed. 2004. “RDF Semantics.” W3C Recommendation, February 2004.
Available at http://www.w3.org/TR/rdf-mt/. May 2005.

Haarslev, Volker and M¨oller, Ralf. 2003. "RACER User’s Guide and Reference Manual
Version 1.7.7." Concordia University, Quebec, Canada University of Applied Sciences,
Wedel, Germany. Available at http://www.sts.tu-harburg.de/~r.f.moeller/racer/racer-
manual-1-7-7.pdf

Heaton, Jeff. 2002. Programming Spiders, Bots, and Aggregators in JavaTM. San
Francisco, CA: SYBEX, Inc.

Horridge, Matthew. 2004. “A Practical Guide to Building OWL Ontologies with the
Protégé-OWL Plugin,” ed. 1.0. Available at http://www.co-
ode.org/resources/tutorials/ProtegeOWLTutorial.pdf. May 2006

Horrocks, Ian. 2002. “DAML+OIL: A Description Logic for the Semantic Web.” IEEE
Intelligent Systems. Trends and Controversies.

Horton, Ivor. 2002. Beginning Java 2, SDK 1.4 Ed. Birmingham, UK: Wrox Press Ltd.

 180

Hunter, David, Kurt Cagle, Chris Dix, Roger Kovack, Jonathan Pinnock, and Jeff Rafter.
2001. Beginning XML, 2nd Ed. Birmingham, UK: Wrox Press Ltd.

Israel, Saul, Norma Roemer, and Loyal Durand, Jr. 1962. World Geography Today. New
York, NY: Holt, Rinehart and Winston, Inc.

Jasper, Robert, and Mike Uschold. 1999. “A Framework for Understanding and
Classifying Ontology Applications.” Boeing Math and Computing Technology.

Jones, Dean, Trevor Bench-Capon, and Pepjin Visser. 1998. “Methodologies for
Ontology Development.” In Proc. IT&KNOWS Conference, XV IFIP World Computer
Congress, Budapest, August 1998. Available at
http://www.iet.com/Projects/RKF/SME/methodologies-for-ontology-development.pdf.
May 2006.

Klein, Michel, and Natalya Noy. 2003. “A Component-Based Framework for Ontology
Evolution.” Technical Report IR-504, Department of Computer Science, Vrije
Universiteit Amsterdam, March 2003. Available at http://sunsite.informatik.rwth-
aachen.de/Publications/CEUR-WS//Vol-71/Klein.pdf. May 2006.

Larman, Craig. 2002. Applying UML and Patters: An Introduction to Object-Oriented
Analysis and Design and the Unified Process. Upper Saddle River, NJ: Prentice Hall
PTR.

Luke, Sean, Lee Spector, David Rager, and James Handler. 1997. “Ontology-based Web
Agents.” In Proceedings of the First International Conference on Autonomous Agents
(Agents'97), ed. W. Lewis Johnson and Barbara Hayes-Roth, 59-68. Marina del Rey, CA:
ACM Press.

Manola, Frank, and Eric Miller, eds. 2004. “RDF Primer.” W3C Recommendation,
February 2004. Available at http://www.w3.org/TR/rdf-primer/. May 2005.

McGuinness, Deborah. 2002. "Ontologies Come of Age." In Dieter Fensel, J im Hendler,
Henry Lieberman, and Wolfgang Wahlster, eds. Spinning the Semantic Web: Bringing
the World Wide Web to Its Full Potential. MIT Press, 2002. Available at http://www-
ksl.stanford.edu/people/dlm/papers/ontologies-come-of-age-mit-press-(with-
citation).htm. May 2006.

McGuinness, Deborah, and Frank van Harmelen, eds. 2004. “OWL Web Ontology
Language Overview.” W3C Recommendation, February 2004. Available at
http://www.w3.org/TR/owl-features/. May 2005.

McLaughlin, Brett. 2001. JavaTM & XML, 2nd Ed. Sebastopol, CA: O’Reilly &
Associates, Inc.

 181

McKinney, Kevin. 1993. Everyday Geography: A Concise, Entertaining Review of
Essential Information about the World We Live in. Chicago, IL: Byron Press Visual
Publications, Inc.

Miller, Eric. 1998. “An Introduction to the Resource Description Framework.” In D-Lib
Magazine, May 1998. Available at http://www.dlib.org/dlib/may98/miller/05miller.html.
May 2006.

Musciano, Chuck, and Bill Kennedy. 2002. HTML and XHTML: The Definitive Guide,
5th Ed. Sebastolpol, CA: O’Reilly & Associates, Inc.

Noy, Natalya, and Michel Klein. 2003. “Ontology Evolution: Not the Same as Schema
Evolution.” Knowledge and Information Systems, 6, 2004: 428-440. Available at
http://smi-web.stanford.edu/pubs/SMI_Reports/SMI-2002-0926.pdf. May 2006.

Noy, Natalya, and Deborah McGuinness. 2002. “Ontology Development 101: A Guide to
Creating Your First Ontology.” Available at
http://protege.stanford.edu/publications/ontology_development/ontology101-noy-
mcguinness.html. May 2006.

Noy, Natalya, Michael Sintek, Stefan Decker, Monica Crubezy, Ray Fergerson and Mark
Musen. 2001. “Creating Semantic Web Contents with Protégé-2000.” In IEEE Intelligent
Systems. Available at http://hcs.science.uva.nl/Capita-AI/2002/papers/Noy.pdf. May
2006.

Palmer, Sean. 2001. “The Semantic Web: Introduction.” Available at
[http://infomesh.net/2001/swintro/]. Aug 2005.

Patel-Schneider, Peter, Patrick Hayes, and Ian Horrocks, eds. 2004. “OWL Web
Ontology Language Semantics and Abstract Syntax.” W3C Recommendation, February
2004. Available at http://www.w3.org/TR/owl-ref/. May 2005.

Potts, Stephen, and Mike Kopack. 2003. Sams Teach Yourself Web Services in 24 Hours.
Indianapolis, IN: Sams Publishing.

Powers, Shelley. 2003. Practical RDF. Sebastopol, CA: O’Reilly & Associates, Inc.

Salkind, Neil. 2004. Statistics for People Who Hate Statistics. Thousand Oaks, CA: Sage
Publications, Inc.

Smith, Michael, Chris Welty, and Deborah McGuinness, eds. 2004. “OWL Web
Ontology Language Guide.” W3C Recommendation, February 2004. Available at
http://www.w3.org/TR/owl-guide/. May 2005.

 182

Snoussi, Hicham, Laurent Magnin, and Jian-Yun Nie. 2002. “Toward an Ontology-based
Web Data Extraction.” University of Montreal, Canada. Available at
http://www.cs.unb.ca/ai2002/baseweb/BASeWEB2002_Paper3.pdf. May 2006.

Song, Daiwei, Kam-Fai Wong, Peter Bruza, and C.H. Cheng. 2000. “Towards A
Commonsense Aboutness Theory for Information Retrieval Modeling.” University of
Queensland, Australia. Available at
http://www.dstc.edu.au/Research/Projects/Infoeco/publications/aboutness-sci00.pdf. May
2006.

Steelman, Andrea, and Joel Murach. 2003. Murach’s Java Servlets and JSP. Fresno, CA:
Mike Murach & Associates, Inc.

Suryanto, Hendra, and Paul Compton. 2000. “Discovery of Ontologies from Knowledge
Bases.” University of New South Wales, Australia. ECAI’2000 Workshop on Ontology
Learning. Available at
http://portal.acm.org/citation.cfm?id=500764&dl=GUIDE&coll=GUIDE&CFID=681
30336&CFTOKEN=7204121. May 2006.

Uschold, Mike, and Michael Gruninger. 1996. “Ontologies: Principles, Methods, and
Applications,” Knowledge Engineering Review, vol. 11, no. 2.

Wilton, Paul. 2004. Beginning JavaScriptTM, 2nd Ed. Indianapolis, IN: Wiley Publishing,
Inc.

York. Richard. 2005. Beginning CSS: Cascading Style Sheets for Web Design.
Indianapolis, IN: Wiley Publishing, Inc.

Zhang, Yi, Wamberto Vasconcelos, and Derek Sleeman. 2004. “OntoSearch: An
Ontology Search Engine.” University of Aberdeen, Scotland, UK. Available at
http://www.csd.abdn.ac.uk/~yzhang/AI-2004.pdf

 183

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Harold Millan
Defense Manpower Data Center
harold.millan@osd.pentagon.mil

